日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù).

          (1)若,上遞增,求的最大值;

          (2)若,存在,使得對任意,都有恒成立,求的取值范圍.

          【答案】(1)-2;(2)

          【解析】

          1)因為上遞增,所以任意恒成立,由得出的單調(diào)性和最小值,即可求得答案;(2)分析題意得有最大值點,求導(dǎo)分類討論的正負(fù)從而研究的單調(diào)性,研究最大值是否存在即可.

          (1)當(dāng)時,

          因為上遞增

          所以任意恒成立

          因為

          當(dāng)時,;當(dāng)時,,

          所以單調(diào)遞減,在單調(diào)遞增

          所以當(dāng)最小

          所以,即

          所以最大值為-2

          (2)當(dāng)時,

          依題意有最大值點

          因為,且,

          ①當(dāng),遞減,

          所以在, 上遞增,不合題意

          ②當(dāng),上遞增,且

          所以上遞減,在上遞增,

          (i)當(dāng),,即在(上遞減,

          所以,即上遞增,不合題意

          (ⅱ)當(dāng),上遞減,上遞增

          ,,所以存在,使得

          且在,遞增;在遞減;符合題意,所求

          (ⅲ)當(dāng)時,上遞減,上遞增

          ,,所以在遞減,不合題意

          (ⅳ)當(dāng)時,,所以上遞減,又因為(

          所以在遞減,不合題意

          綜上所述,當(dāng)且僅當(dāng)時,存在滿足題意的

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)A,B分別為雙曲線 (a>0,b>0)的左、右頂點,雙曲線的實軸長為4,焦點到漸近線的距離為.

          (1)求雙曲線的方程;

          (2)已知直線yx-2與雙曲線的右支交于M,N兩點,且在雙曲線的右支上存在點D,使,求t的值及點D的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知橢圓,如圖所示,斜率為k(k>0)且不過原點的直線l交橢圓C于兩點A,B,線段AB的中點為E,射線OE交橢圓C于點G,交直線x=﹣3于點D(﹣3,m).

          (1)求m2+k2的最小值;

          (2)若|OG|2=|OD||OE|,求證:直線l過定點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著教育信息化2.0時代的到來,依托網(wǎng)絡(luò)進行線上培訓(xùn)越來越便捷,逐步成為實現(xiàn)全民終身學(xué)習(xí)的重要支撐.最近某高校繼續(xù)教育學(xué)院采用線上和線下相結(jié)合的方式開展了一次300名學(xué)員參加的“國學(xué)經(jīng)典誦讀”專題培訓(xùn).為了解參訓(xùn)學(xué)員對于線上培訓(xùn)、線下培訓(xùn)的滿意程度,學(xué)院隨機選取了50名學(xué)員,將他們分成兩組,每組25人,分別對線上、線下兩種培訓(xùn)進行滿意度測評,根據(jù)學(xué)員的評分(滿分100)繪制了如下莖葉圖:

          (1)根據(jù)莖葉圖判斷學(xué)員對于線上、線下哪種培訓(xùn)的滿意度更高?并說明理由;

          (2)50名學(xué)員滿意度評分的中位數(shù),并將評分不超過、超過分別視為基本滿意”、“非常滿意”兩個等級.

          (i)利用樣本估計總體的思想,估算本次培訓(xùn)共有多少學(xué)員對線上培訓(xùn)非常滿意?

          (ii)根據(jù)莖葉圖填寫下面的列聯(lián)表:

          并根據(jù)列聯(lián)表判斷能否有99.5%的把握認(rèn)為學(xué)員對兩種培訓(xùn)方式的滿意度有差異?

          附:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,數(shù)軸,的交點為,夾角為,與軸、軸正向同向的單位向量分別是,.由平面向量基本定理,對于平面內(nèi)的任一向量,存在唯一的有序?qū)崝?shù)對,使得,我們把叫做點在斜坐標(biāo)系中的坐標(biāo)(以下各點的坐標(biāo)都指在斜坐標(biāo)系中的坐標(biāo)).

          1)若,為單位向量,且的夾角為,求點的坐標(biāo);

          2)若,點的坐標(biāo)為,求向量的夾角;

          3)若,求過點的直線的方程,使得原點到直線的距離最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個字都取到記為事件,用隨機模擬的方法估計事件發(fā)生的概率.利用電腦隨機產(chǎn)生整數(shù)0,1,2,3四個隨機數(shù),分別代表“瓷、都、文、明”這四個字,以每三個隨機數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):

          232

          321

          230

          023

          123

          021

          132

          220

          001

          231

          130

          133

          231

          031

          320

          122

          103

          233

          由此可以估計事件發(fā)生的概率為(

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知直線的方程為,曲線是以坐標(biāo)原點為頂點,直線為準(zhǔn)線的拋物線.以坐標(biāo)原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系.

          (1)分別求出直線與曲線的極坐標(biāo)方程:

          (2)點是曲線上位于第一象限內(nèi)的一個動點,點是直線上位于第二象限內(nèi)的一個動點,且,請求出的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解某中學(xué)學(xué)生對數(shù)學(xué)學(xué)習(xí)的情況,從該校抽了名學(xué)生,分析了這名學(xué)生某次數(shù)學(xué)考試成績(單位:分),得到了如下的頻率分布直方圖:

          1)求頻率分布直方圖中的值;

          2)根據(jù)頻率分布直方圖估計該組數(shù)據(jù)的中位數(shù)(精確到);

          3)在這名學(xué)生的數(shù)學(xué)成績中,從成績在的學(xué)生中任選人,求次人的成績都在中的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)。

          (Ⅰ)求函數(shù)在區(qū)間上的最大值;

          (Ⅱ)設(shè)在(0,2)內(nèi)恰有兩個極值點,求實數(shù)的取值范圍;

          (Ⅲ)設(shè),方程在區(qū)間有解,求實數(shù)的取值范圍。

          查看答案和解析>>

          同步練習(xí)冊答案