日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】如圖,正三棱柱ABC﹣A1B1C1的所有棱長都為2,D為CC1中點.試用空間向量知識解下列問題:

          (1)求證:平面ABB1A1⊥平面A1BD;
          (2)求二面角A﹣A1D﹣B的大。

          【答案】
          (1)證明:取BC中點O,連AO,∵△ABC為正三角形,

          ∴AO⊥BC,

          ∵在正三棱柱ABC﹣A1B1C1中,

          平面ABC⊥平面BCC1B1,

          ∴AD⊥平面BCC1B1,

          取B1C1中點為O1,以O為原點,

          的方向為x,y,z軸的正方向,

          建立空間直角坐標系,

          ,

          ,

          , ,∴AB1⊥面A1BD.…(5分)

          AA1面A1BD

          所以 平面ABB1A1⊥面A1BD


          (2)解:設平面A1AD的法向量為 ,

          ,∴ ,∴

          令z=1,得 為平面A1AD的一個法向量,

          由(1)知AB1⊥面A1BD,

          為平面A1AD的法向量, ,

          ∴二面角A﹣A1D﹣B的正弦值為 =


          【解析】(1)取BC中點O,連AO,利用正三角形三線合一,及面面垂直的性質可得AO⊥平面BCB1C1 , 取B1C1中點為O1 , 以O為原點, , 的方向為x,y,z軸的正方向,建立空間直角坐標系,求出AB1的方向向量,利用向量垂直的充要條件及線面垂直的判定定理可得AB1⊥平面A1BD,即可證明平面ABB1A1⊥平面A1BD;(2)分別求出平面A1AD的法向量和平面A1AD的一個法向量代入向量夾角公式,可得二面角A﹣A1D﹣B的余弦值大小.
          【考點精析】通過靈活運用平面與平面垂直的判定,掌握一個平面過另一個平面的垂線,則這兩個平面垂直即可以解答此題.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】已知函數, .

          (1)若直線是曲線與曲線的公切線,求;

          (2)設,若有兩個零點,求的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在銳角三角形中,若,則的取值范圍是__________

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數f(x)=x2+2ax+2,x∈[﹣5,5].
          (1)當a=﹣1時,求函數f(x)的最大值和最小值;
          (2)當a∈R時,求函數f(x)的最小值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1= ,AB=1,AD=2,E為BC的中點,點M為棱AA1的中點.

          (1)證明:DE⊥平面A1AE;
          (2)證明:BM∥平面A1ED.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】下列命題:
          ①函數y=﹣ 在其定義域上是增函數;
          ②函數y= 是奇函數;
          ③函數y=log2(x﹣1)的圖象可由y=log2(x+1)的圖象向右平移2個單位得到;
          ④若( a=( b<1.則a<b<0
          則下列正確命題的序號是

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c.已知a﹣c= b,sinB= sinC.
          (1)求cosA的值;
          (2)求cos(A+ )的值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】設命題p:函數y=kx+1在R上是增函數,命題q:x∈R,x2+(2k﹣3)x+1=0,如果p∧q是假命題,p∨q是真命題,求k的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在正方體ABCD﹣A1B1C1D1中,則異面直線AD1與A1C1所成角的余弦值是

          查看答案和解析>>

          同步練習冊答案