日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),且曲線在點(diǎn)處的切線方程為.

          (1)求實(shí)數(shù)的值及函數(shù)的最大值;

          (2)證明:對(duì)任意的.

          【答案】(1)見解析;(2)見解析

          【解析】分析:(1)求出導(dǎo)函數(shù),已知切線方程說明,代入后可得,然后確定函數(shù)的單調(diào)區(qū)間,得出最大值;

          (2)不等式為,可用導(dǎo)數(shù)求得的最小值,證明這個(gè)最小值大于0,即證得原不等式成立.

          詳解:(1)函數(shù)的定義域?yàn)?/span>,,因的圖象在點(diǎn)處的切線方程為,所以解得,所以,故.令,得,

          當(dāng)時(shí),單調(diào)遞增;

          當(dāng)時(shí),,單調(diào)遞減.

          所以當(dāng)時(shí),取得最大值

          (2)證明:原不等式可變?yōu)?/span>

          ,可知函數(shù)單調(diào)遞增,

          而,

          所以方程在(0,+∞)上存在唯一實(shí)根x0,即

          當(dāng)x∈(0,x0)時(shí),,函數(shù)h(x)單調(diào)遞減;

          當(dāng)x∈(x0,+∞)時(shí),,函數(shù)h(x)單調(diào)遞增;所以

          .

          在(0,+∞)上恒成立,

          所以對(duì)任意x>0,成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知為三個(gè)不同的定點(diǎn).以原點(diǎn)為圓心的圓與線段都相切.

          (Ⅰ)求圓的方程及的值;

          (Ⅱ)若直線與圓相交于兩點(diǎn),且,求的值;

          (Ⅲ)在直線上是否存在異于的定點(diǎn),使得對(duì)圓上任意一點(diǎn),都有為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)及的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)若函數(shù)處取得極值,求的值;

          (Ⅱ)設(shè),若函數(shù)在定義域上為單調(diào)增函數(shù),求的最大整數(shù)值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從含有兩件正品,和一件次品的3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件是次品的概率.

          (1)每次取出不放回;

          (2)每次取出后放回.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABCD為直角梯形,∠C=∠CDA=90°,AD=2BC=2CD=2,P為平面ABCD外一點(diǎn),且PB⊥BD.
          (1)求證:PA⊥BD;
          (2)若直線l過點(diǎn)P,且直線l∥直線BC,試在直線l上找一點(diǎn)E,使得直線PC∥平面EBD;
          (3)若PC⊥CD,PB=4,求四棱錐P﹣ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】雙曲線 =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點(diǎn),若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,則e2的值是(
          A.1+2
          B.3+2
          C.4﹣2
          D.5﹣2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】世界那么大,我想去看看,處在具有時(shí)尚文化代表的大學(xué)生們旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見大學(xué)生旅游是一個(gè)巨大的市場(chǎng).為了解大學(xué)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門隨機(jī)抽取了某大學(xué)的名學(xué)生進(jìn)行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

          組別

          頻數(shù)

          (Ⅰ)求所得樣本的中位數(shù)(精確到百元);

          (Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在元以上;

          (Ⅲ)已知樣本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.

          附:若,則,

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個(gè)有邊落在BC與CD上的長方形鐵皮,其中P是弧TN上一點(diǎn).設(shè),長方形的面積為S平方米.

          (1)求關(guān)于的函數(shù)解析式;

          (2)求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,過點(diǎn)P作圓O的割線PBA與切線PE,E為切點(diǎn),連接AE、BE,∠APE的平分線與AE、BE分別交于點(diǎn)C、D,其中∠AEB=30°.

          (1)求證:
          (2)求∠PCE的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案