(本題滿(mǎn)分13分)
設(shè)實(shí)數(shù)
, 設(shè)函數(shù)
的最大值為
。
(1)設(shè),求
的取值范圍,并把
表示為
的函數(shù)
;
(2)求
(1)
(2)
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=x2+x-.
(1)若函數(shù)的定義域?yàn)閇0,3],求f(x)的值域;
(2)若定義域?yàn)閇a,a+1]時(shí),f(x)的值域是[-,],求a的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于函數(shù),
(1)判斷并證明函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù)a,使函數(shù)為奇函數(shù)?證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),
, 其中
是不等于零的常數(shù),
(1)、(理)寫(xiě)出的定義域(2分);
(文)時(shí),直接寫(xiě)出
的值域(4分)
(2)、(文、理)求的單調(diào)遞增區(qū)間(理5分,文8分);
(3)、已知函數(shù),定義:
,
.其中,
表示函數(shù)
在
上的最小值,
表示函數(shù)
在
上的最大值.例如:
,
,則
,
,
(理)當(dāng)時(shí),設(shè)
,不等式
恒成立,求的取值范圍(11分);
(文)當(dāng)時(shí),
恒成立,求
的取值范圍(8分);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分分)
在股票市場(chǎng)上,投資者常參考 股價(jià)(每一股的價(jià)格)的某條平滑均線(xiàn)(記作)的變化情況來(lái)決定買(mǎi)入或賣(mài)出股票.股民老張?jiān)谘芯抗善钡淖邉?shì)圖時(shí),發(fā)現(xiàn)一只股票的
均線(xiàn)近期走得很有特點(diǎn):如果按如圖所示的方式建立平面直角坐標(biāo)系
,則股價(jià)
(元)和時(shí)間
的關(guān)系在
段可近似地用解析式
(
)來(lái)描述,從
點(diǎn)走到今天的
點(diǎn),是震蕩筑底階段,而今天出現(xiàn)了明顯的筑底結(jié)束的標(biāo)志,且
點(diǎn)和
點(diǎn)正好關(guān)于直線(xiàn)
對(duì)稱(chēng).老張預(yù)計(jì)這只股票未來(lái)的走勢(shì)如圖中虛線(xiàn)所示,這里
段與
段關(guān)于直線(xiàn)
對(duì)稱(chēng),
段是股價(jià)延續(xù)
段的趨勢(shì)(規(guī)律)走到這波上升行情的最高點(diǎn)
.
現(xiàn)在老張決定取點(diǎn),點(diǎn)
,點(diǎn)
來(lái)確定解析式中的常數(shù)
,并且已經(jīng)求得
.
(Ⅰ)請(qǐng)你幫老張算出,并回答股價(jià)什么時(shí)候見(jiàn)頂(即求
點(diǎn)的橫坐標(biāo)).
(Ⅱ)老張如能在今天以點(diǎn)處的價(jià)格買(mǎi)入該股票
股,到見(jiàn)頂處
點(diǎn)的價(jià)格全部賣(mài)出,不計(jì)其它費(fèi)用,這次操作他能賺多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
已知函數(shù)f(x)=-x2+ax-lnx(a∈R).
(1)求函數(shù)f(x)既有極大值又有極小值的充要條件;
(2)當(dāng)函數(shù)f(x)在[,2]上單調(diào)時(shí),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的單調(diào)性,并簡(jiǎn)要說(shuō)明理由,不需要用定義證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
((本小題滿(mǎn)分12分)
已知函數(shù)是
上的增函數(shù),
,
.
(Ⅰ)若,求證:
;
(Ⅱ)判斷(Ⅰ)中命題的逆命題是否成立,并用反證法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
14分)
(1)已知是奇函數(shù),求常數(shù)m的值;
(2)畫(huà)出函數(shù)的圖象,并利用圖象回答:
k為何值時(shí),方程|3x-1|=k無(wú)解?有一解?有兩解?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com