【題目】設(shè)函數(shù),
的圖象在點(diǎn)
處的切線與直線
平行.
(1)求的值;
(2)若函數(shù)(
),且
在區(qū)間
上是單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍.
【答案】(1) ;(2)
.
【解析】試題分析:(1) 根據(jù)切線的斜率,求出b的值即可;
(2)求出的導(dǎo)數(shù),
在
上為單調(diào)遞減函數(shù),等價(jià)于
在
上恒成立,即
在
上恒成立,構(gòu)造
求最值即可.
試題解析:(1)由題意知,曲線在點(diǎn)
處的切線斜率為3,所以
,又
,即
,所以
. (2)由(1)知
,所以
,若
在
上為單調(diào)遞減函數(shù),則
在
上恒成立, 即
,所以
. 令
, 則
,由
,得
,
,得
,故
在
上是減函數(shù),在
上是增函數(shù),則
,
無最大值,
在
上不恒成立,故
在
不可能是單調(diào)減函數(shù). 若
在
上為單調(diào)遞增函數(shù),則
在
上恒成立,即
,所以
,由前面推理知,
的最小值為
, ∴
,故
的取值范圍是
.
點(diǎn)晴:本題主要考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,不等式恒成立問題. 在
上為單調(diào)遞減函數(shù),等價(jià)于
在
上恒成立,通過變量分離可轉(zhuǎn)化為
在
上恒成立,先構(gòu)造
即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (k>0).
(1)若f(x)>m的解集為{x|x<﹣3或x>﹣2},求不等式5mx2+ x+3>0的解集;
(2)若存在x>3使得f(x)>1成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=an3n(x∈R).求數(shù)列{bn}前n項(xiàng)和的公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn= ,數(shù)列{cn}的前n項(xiàng)和為Tn .
①求Tn;
②對于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(1)求證:a,b,c成等比數(shù)列;
(2)若a=1,c=2,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過的動(dòng)圓恒與
軸相切,設(shè)切點(diǎn)為
是該圓的直徑.
(Ⅰ)求點(diǎn)軌跡
的方程;
(Ⅱ)當(dāng)不在y軸上時(shí),設(shè)直線
與曲線
交于另一點(diǎn)
,該曲線在
處的切線與直線
交于
點(diǎn).求證:
恒為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,可以將函數(shù)y=cos2x的圖象( )
A.向右平移
B.向右平移
C.向左平移
D.向左平移
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= sin2x+2cos2x+m在區(qū)間[0,
]上的最大值為6,求常數(shù)m的值及此函數(shù)當(dāng)x∈R時(shí)的最小值,并求相應(yīng)的x的取值集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com