日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)力F作用在質(zhì)點(diǎn)m上使m沿x軸從x=1運(yùn)動(dòng)到x=10,已知Fx2+1且力的方向和x軸的正向相同,求F對(duì)質(zhì)點(diǎn)m所作的功.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)。
          (1)若,求處的切線方程;
          (2)若在R上是增函數(shù),求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù) , .
          (Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
          (Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
          (Ⅲ)當(dāng)時(shí),函數(shù)上的最大值為,若存在,使得成立,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),其中.
          (Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
          (Ⅱ)求f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=lnx,g(x)=ax2+bx(a≠0),設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于兩點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線互相平行?若存在,求出點(diǎn)R的橫坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=(x2ax-2a2+3a)ex(x∈R),其中a∈R.
          (1)當(dāng)a=0時(shí),求曲線yf(x)在點(diǎn)(1,f(1))處的切線的斜率;
          (2)當(dāng)a時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=-x3+ax2-4(a∈R).
          (1)若函數(shù)y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線的傾斜角為,求f(x)在[-1,1]上的最小值;
          (2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=ln x+ax(a∈R).
          (1)求f(x)的單調(diào)區(qū)間;
          (2)設(shè)g(x)=x2-4x+2,若對(duì)任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知曲線y=x3+,
          (1)求曲線過點(diǎn)P(2,4)的切線方程.
          (2)求曲線的斜率為4的切線方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案