日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,曲線為參數(shù), ),其中,在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.

          (Ⅰ)求交點(diǎn)的直角坐標(biāo)系;

          (Ⅱ)若相交于點(diǎn),相交于點(diǎn),求的最大值.

          【答案】(1)交點(diǎn)坐標(biāo)為, .(2)最大值為

          【解析】試題分析:(1)根據(jù) 將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,再聯(lián)立方程組求解交點(diǎn)的直角坐標(biāo),(2)曲線為直線,傾斜角為,極坐標(biāo)方程為,代入的極坐標(biāo)方程可得的極坐標(biāo),則為對(duì)應(yīng)極徑之差的絕對(duì)值,即,最后根據(jù)三角函數(shù)關(guān)系有界性求最值.

          試題解析:解:(Ⅰ) , ,

          聯(lián)立得交點(diǎn)坐標(biāo)為

          (Ⅱ)曲線的極坐標(biāo)方程為,其中

          因此得到的極坐標(biāo)為,

          的極坐為

          所以,

          當(dāng)時(shí), 取得最大值,最大值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)f(x)=ax2+bx+1,a,b∈R,當(dāng)x=﹣1時(shí),函數(shù)f(x)取到最小值,且最小值為0;
          (1)求f(x)解析式;
          (2)關(guān)于x的方程f(x)=|x+1|﹣k+3恰有兩個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知是公差不為零的等差數(shù)列,,且,成等比數(shù)列.

          (1)求數(shù)列的通項(xiàng);

          (2)求數(shù)列的前項(xiàng)和

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率為,且過(guò)點(diǎn)

          (Ⅰ)求橢圓的方程.

          (Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù).

          (1)當(dāng)時(shí),求的單調(diào)區(qū)間;

          (2)當(dāng)時(shí), 恒成立,求的取值范圍;

          (3)求證:當(dāng)時(shí), .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=lg(1+x)+lg(1﹣x).
          (1)求函數(shù)f(x)的定義域;
          (2)判斷函數(shù)f(x)的奇偶性;
          (3)求函數(shù)f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如果定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x),在(0,+∞)內(nèi)是減函數(shù),又有f(3)=0,則xf(x)<0的解集為(
          A.{x|﹣3<x<0或x>3}
          B.{x|x<﹣3或0<x<3}
          C.{x|﹣3<x<0或0<x<3}
          D.{x|x<﹣3或x>3}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為迎接2017年“雙”,“雙”購(gòu)物狂歡節(jié)的來(lái)臨,某青花瓷生產(chǎn)廠家計(jì)劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共個(gè),生產(chǎn)一個(gè)湯碗需分鐘,生產(chǎn)一個(gè)花瓶需分鐘,生產(chǎn)一個(gè)茶杯需分鐘,已知總生產(chǎn)時(shí)間不超過(guò)小時(shí).若生產(chǎn)一個(gè)湯碗可獲利潤(rùn)元,生產(chǎn)一個(gè)花瓶可獲利潤(rùn)元,生產(chǎn)一個(gè)茶杯可獲利潤(rùn)元.

          (1)使用每天生產(chǎn)的湯碗個(gè)數(shù)與花瓶個(gè)數(shù)表示每天的利潤(rùn)(元);

          (2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某學(xué)校在一次第二課堂活動(dòng)中,特意設(shè)置了過(guò)關(guān)智力游戲,游戲共五關(guān).規(guī)定第一關(guān)沒(méi)過(guò)者沒(méi)獎(jiǎng)勵(lì),過(guò)關(guān)者獎(jiǎng)勵(lì)件小獎(jiǎng)品(獎(jiǎng)品都一樣).下圖是小明在10次過(guò)關(guān)游戲中過(guò)關(guān)數(shù)的條形圖,以此頻率估計(jì)概率.

          (Ⅰ)求小明在這十次游戲中所得獎(jiǎng)品數(shù)的均值;

          (Ⅱ)規(guī)定過(guò)三關(guān)者才能玩另一個(gè)高級(jí)別的游戲,估計(jì)小明一次游戲后能玩另一個(gè)游戲的概率;

          (Ⅲ)已知小明在某四次游戲中所過(guò)關(guān)數(shù)為{2,2,3,4},小聰在某四次游戲中所過(guò)關(guān)數(shù)為{3,3,4,5},現(xiàn)從中各選一次游戲,求小明和小聰所得獎(jiǎng)品總數(shù)超過(guò)10的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案