【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為
(其中
為參數(shù)),以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ)求C的普通方程和直線的傾斜角;
(Ⅱ)設(shè)點(0,2),
和
交于
兩點,求
.
【答案】(Ⅰ),
. (Ⅱ)
.
【解析】
試題分析:(Ⅰ)由參數(shù)方程消去參數(shù)即得;由極坐標(biāo)方程化為直角坐標(biāo)方程,根據(jù)斜率即得傾斜角
(Ⅱ)根據(jù)在直線
上, 可設(shè)直線
的參數(shù)方程代入橢圓方程化簡,根據(jù)一元二次方程根與系數(shù)的關(guān)系,利用參數(shù)的幾何意義求解.
試題解析:解法一:(Ⅰ)由消去參數(shù)
,得
,
由,得
,(*)
將代入(*),化簡得
,
所以直線的傾斜角為
.
(Ⅱ)由(Ⅰ)知,點在直線
上, 可設(shè)直線
的參數(shù)方程為
(
為參數(shù)),
即(
為參數(shù)),
代入并化簡,得
.
. 設(shè)
兩點對應(yīng)的參數(shù)分別為
,
則,所以
所以.
解法二:(Ⅰ)同解法一.
(Ⅱ)直線的普通方程為
.
由消去
得
,
于是.
設(shè),則
,所以
.
故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,拋物線的焦點為F,過F的動直線l交
于M、N兩點.
(1)若l垂直于x軸,且線段MN的長為1,求的方程;
(2)若,求線段MN的中點P的軌跡方程;
(3)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上下兩個焦點分別為
,過點
與
軸垂直的直線交橢圓
于
兩點,
的面積為
,橢圓
的長軸長是短軸長的
倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知為坐標(biāo)原點,直線
與
軸交于點
,與橢園
交于
兩個不同的點,若存在實數(shù)
,使得
,求
的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別是
、
,離心率
,過點
的直線交橢圓
于
、
兩點,
的周長為16.
(1)求橢圓的方程;
(2)已知為原點,圓
:
(
)與橢圓
交于
、
兩點,點
為橢圓
上一動點,若直線
、
與
軸分別交于
、
兩點,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平行四邊形中,
點
是
邊的中點,將
沿
折起,使點
到達點
的位置,且
(1)求證; 平面平面
;
(2)若平面和平面
的交線為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為:( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(常數(shù)
),P是曲線C上的動點,M是曲線C的右頂點,定點A的坐標(biāo)為
.
(1)若M與A重合,求曲線C的焦距.
(2)若,求
的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在其圖象上存在不同的兩點
,
,其坐標(biāo)滿足條件:
的最大值為0,則稱
為“柯西函數(shù)”,則下列函數(shù):①
:②
:③
:④
.
其中為“柯西函數(shù)”的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com