日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).
          (1)當(dāng)a=-1時(shí),求曲線y=f(x)在x=1處切線的方程;
          (2)當(dāng)a>0時(shí),討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間.
          (1)y=2x.
          (2)函數(shù)f(x)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.
          解:(1)當(dāng)a=-1時(shí),f(x)=x2+x-ln x,
          則f′(x)=2x+1-,
          所以f(1)=2,且f′(1)=2.
          所以曲線y=f(x)在x=1處的切線的方程為
          y-2=2(x-1),即y=2x.
          (2)由題意得f′(x)=2x-(1+2a)+

           (x>0).
          由f′(x)=0,得x1,x2=a.
          ①當(dāng)0<a<時(shí),由f′(x)>0且x>0,
          得0<x<a或<x<1;
          由f′(x)<0且x>0,得a<x<.
          所以函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,a)和,單調(diào)遞減區(qū)間是
          ②當(dāng)a=時(shí),f′(x)=≥0,當(dāng)且僅當(dāng)x=時(shí),
          f′(x)=0.
          所以函數(shù)f(x)在區(qū)間(0,1)上是單調(diào)遞增函數(shù);
          ③當(dāng)<a<1時(shí),由f′(x)>0且x>0,
          得0<x<或a<x<1;
          由f′(x)<0且x>0,得<x<a.
          所以函數(shù)f(x)的單調(diào)遞增區(qū)間是和(a,1),單調(diào)遞減區(qū)間是;
          ④當(dāng)a≥1時(shí),由f′(x)>0且x>0,
          得0<x<;
          由f′(x)<0且x>0,得<x<1.
          所以函數(shù)f(x)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù).
          (1當(dāng) 時(shí), 與)在定義域上單調(diào)性相反,求的 的最小值。
          (2)當(dāng)時(shí),求證:存在,使的三個(gè)不同的實(shí)數(shù)解,且對(duì)任意都有.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù)f(x)=ax-,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0.
          (1)求f(x)的解析式;
          (2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知A、B、C是直線l上不同的三點(diǎn),O是l外一點(diǎn),向量滿足:記y=f(x).
          (1)求函數(shù)y=f(x)的解析式:
          (2)若對(duì)任意不等式恒成立,求實(shí)數(shù)a的取值范圍:
          (3)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          定義在區(qū)間上的連續(xù)函數(shù)的導(dǎo)函數(shù)為,如果使得,則稱為區(qū)間上的“中值點(diǎn)”.下列函數(shù):①;②;③;④在區(qū)間上“中值點(diǎn)”多于一個(gè)的函數(shù)序號(hào)為           .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知曲線 y = x3 + x-2 在點(diǎn) P0 處的切線  平行直線
          4x-y-1=0,且點(diǎn) P0 在第三象限,
          求P0的坐標(biāo); ⑵若直線  , 且 l 也過切點(diǎn)P0 ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)處取得極值.
          (1)求的值;(2)求的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知函數(shù)在區(qū)間內(nèi)單調(diào),則的最大值為__________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè),若,則(  )
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案