【題目】如圖,在三棱柱中,
平面
,
,
,以
,
為鄰邊作平行四邊形
,連接
,
,若二面角
為45°.
(1)求證:平面⊥平面
;
(2)求直線與平面
所成角的正切值.
【答案】(1)見解析;(2).
【解析】
(1)由已知二面角得出的邊
上的高與
相等,從而得
,再由已知線面垂直得線線垂直,從而可證得線面垂直,最后可得面面垂直;
(2)以為
軸建立空間直角坐標(biāo)系,用空間向量法求線面角的正弦,然后可得正切.
(1)取中點(diǎn)
,連接
,∵平行四邊形
中
,∴
,
,
∴,又
平面
,
平面
,∴
,
,∴
平面
,而
平面
,
∴,∴
是二面角
的平面角,∴
=45°。
∴,∴
,
又由平面
,得
,
,∴
平面
,而
,∴
平面
,又∵
平面
,
∴平面⊥平面
;
(2)由(1),以為
軸建立空間直角坐標(biāo)系,如圖,則
,
,
,
,
,由(1)
是平面
的一個(gè)法向量,
設(shè)直線與平面
所成角為
,
則,
,所以
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
已知函數(shù)(
為常數(shù))的圖像與
軸交于點(diǎn)
,曲線
在點(diǎn)
處的切線斜率為
.
(1)求的值及函數(shù)
的極值;
(2)證明:當(dāng)時(shí),
(3)證明:對任意給定的正數(shù),總存在
,使得當(dāng)
時(shí),恒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】ABC的三個(gè)角A,B,C所對的邊分別是a,b,c,向量
=(2,-1),
=(sinBsinC,
+2cosBcosC),且
⊥
.
(1)求角A的大;
(2)現(xiàn)給出以下三個(gè)條件:①B=45;②2sinC-(+1)sinB=0;③a=2.試從中再選擇兩個(gè)條件以確定
ABC,并求出所確定的
ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)為參數(shù),
(1)解關(guān)于的不等式
;
(2)當(dāng)最大值為
,最小值為
,若
,求參數(shù)
的取值范圍;
(3)若在區(qū)間
上滿足
有兩解,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時(shí),求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅱ)若時(shí),關(guān)于
的不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若數(shù)列滿足
,
,記
的前
項(xiàng)和為
,求證:
.
【答案】(I);(II)
;(III)證明見解析.
【解析】試題分析:(Ⅰ)求出,在定義域內(nèi),分別令
求得
的范圍,可得函數(shù)
增區(qū)間,
求得
的范圍,可得函數(shù)
的減區(qū)間;(Ⅱ)當(dāng)
時(shí),因?yàn)?/span>
,所以
顯然不成立,先證明因此
時(shí),
在
上恒成立,再證明當(dāng)
時(shí)不滿足題意,從而可得結(jié)果;(III)先求出等差數(shù)列的前
項(xiàng)和為
,結(jié)合(II)可得
,各式相加即可得結(jié)論.
試題解析:(Ⅰ)由,得
.所以
令,解得
或
(舍去),所以函數(shù)
的單調(diào)遞減區(qū)間為
.
(Ⅱ)由得,
當(dāng)時(shí),因?yàn)?/span>
,所以
顯然不成立,因此
.
令,則
,令
,得
.
當(dāng)時(shí),
,
,∴
,所以
,即有
.
因此時(shí),
在
上恒成立.
②當(dāng)時(shí),
,
在
上為減函數(shù),在
上為增函數(shù),
∴,不滿足題意.
綜上,不等式在
上恒成立時(shí),實(shí)數(shù)
的取值范圍是
.
(III)證明:由知數(shù)列
是
的等差數(shù)列,所以
所以
由(Ⅱ)得, 在
上恒成立.
所以. 將以上各式左右兩邊分別相加,得
.因?yàn)?/span>
所以
所以.
【題型】解答題
【結(jié)束】
22
【題目】已知直線, (
為參數(shù),
為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的直角坐標(biāo)方程為
.
(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為
,直線
與曲線
的交點(diǎn)為
、
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,
(1)當(dāng)時(shí),求
的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使
在區(qū)間
上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年中央電視臺春節(jié)聯(lián)歡晚會分會場之一落戶黔東南州黎平縣肇興侗寨,黔東南州某中學(xué)高二社會實(shí)踐小組就社區(qū)群眾春晚節(jié)目的關(guān)注度進(jìn)行了調(diào)查,隨機(jī)抽取80名群眾進(jìn)行調(diào)查,將他們的年齡分成6段: ,
,
,
,
,
,得到如圖所示的頻率分布直方圖.問:
(Ⅰ)求這80名群眾年齡的中位數(shù);
(Ⅱ)若用分層抽樣的方法從年齡在中的群眾隨機(jī)抽取6名,并從這6名群眾中選派3人外出宣傳黔東南,求選派的3名群眾年齡在
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn),點(diǎn)
是單位圓與
軸的正半軸的交點(diǎn).
(1)若,求
.
(2)已知,
,若
是等邊三角形,求
的面積.
(3)設(shè)點(diǎn)為單位圓上的動點(diǎn),點(diǎn)
滿足
,
,
,求
的取值范圍.當(dāng)
時(shí),求四邊形
的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com