日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在直角坐標系中,已知傾斜角為的直線過點,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.曲線的極坐標方程為,直線與曲線分別交于、兩點.

          1)寫出直線的參數(shù)方程和曲線的直角坐標方程;

          2)若,求直線的斜率

          【答案】1)直線的參數(shù)方程為為參數(shù)),曲線的直角坐標方程為;(2.

          【解析】

          1)由傾斜角為的直線過點,能求出直線的參數(shù)方程;曲線的極坐標方程化為,由此能求出曲線的直角坐標方程;

          2)將直線的參數(shù)方程代入曲線的直角坐標方程,可得出關于的一元二次方程,列出韋達定理,利用的幾何意義結合條件可得出關于的三角方程,求出的值,即可得出直線的斜率的值.

          1傾斜角為的直線過點直線的參數(shù)方程為為參數(shù)),

          在曲線的極坐標方程兩邊同時乘以,

          因此,曲線的直角坐標方程為

          2)曲線的直角坐標方程可化為,

          將直線的參數(shù)方程為參數(shù))代入曲線的直角坐標方程得,

          整理得,得.

          兩點在直線上對應的參數(shù)分別為、,由韋達定理得,

          ,,即,所以,

          解得滿足,此時

          所以,,因此,直線的斜率為.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知中心為原點O,焦點在x軸上的橢圓C的離心率為,且橢圓C的長軸是圓的一條直徑.

          1)求橢圓C的方程;

          2)若不過原點的直線l與橢圓C交于A,B兩點,與圓M交于P、Q兩點,且直線OA,AB,OB的斜率成等比數(shù)列,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,數(shù)列的前n項和為,且;數(shù)列的前n項和為,且滿足,且.

          1)求數(shù)列的通項公式;

          2)求數(shù)列的通項公式;

          3)設,問:數(shù)列中是否存在不同兩項,,i,),使仍是數(shù)列中的項?若存在,請求出ij;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

          1)寫出的普通方程和的直角坐標方程;

          2)若相交于兩點,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),.

          (1)若,求的最大值;

          (2)當時,求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在三角形中,,,平面與半圓弧所在的平面垂直,點為半圓弧上異于的動點,的中點.

          1)求證:;

          2)當三棱錐體積最大時,求銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在三角形中,,平面與半圓弧所在的平面垂直,點為半圓弧上異于的動點,的中點.

          1)求證:;

          2)求三棱錐體積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          1)若存在極大值,證明:;

          2)若關于的不等式在區(qū)間上恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某縣畜牧技術員張三和李四年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量(單位:萬只)與相應年份(序號)的數(shù)據(jù)表和散點圖(如圖所示),根據(jù)散點圖,發(fā)現(xiàn)yx有較強的線性相關關系.

          年份序號

          年養(yǎng)殖山羊/萬只

          1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求關于的線性回歸方程(參考統(tǒng)計量:,;

          2)李四提供了該縣山羊養(yǎng)殖場的個數(shù)(單位:個)關于的回歸方程.

          試估計:①該縣第一年養(yǎng)殖山羊多少萬只?

          ②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

          附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:

          查看答案和解析>>

          同步練習冊答案