【題目】已知函數(shù),
.
(1)若,求
的最大值;
(2)當(dāng)時(shí),求證:
.
【答案】(1) (2)見解析
【解析】分析:(1)給定區(qū)間求最值需先求導(dǎo)判出在相應(yīng)區(qū)間上的單調(diào)性;
(2)構(gòu)造新函數(shù),運(yùn)用放縮進(jìn)行處理。先證,又由
,
,所以
。
詳解:(1)解:當(dāng)時(shí),
,
由,得
,所以
時(shí),
;
時(shí),
,
因此的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
,
的最大值為
.
(2)證明:先證,
令,
則
,
由,
與
的圖象易知,存在
,使得
,
故時(shí),
;
時(shí),
,
所以的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
,
所以的最大值為
,
而,
.
又由,
,所以
,
當(dāng)且僅當(dāng),取“=”成立,即
.
點(diǎn)晴:導(dǎo)數(shù)是做題的工具,在解決問題時(shí),一般首先要對題干的轉(zhuǎn)化,帶著目標(biāo)做下手,一般都是轉(zhuǎn)化成最值的問題,然后最值的問題都是利用單調(diào)性去解決
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由非負(fù)整數(shù)組成的無窮數(shù)列,對每一個正整數(shù)
,該數(shù)列前
項(xiàng)的最大值記為
,第
項(xiàng)之后各項(xiàng)
的最小值記為
,記
.
(1)若數(shù)列的通項(xiàng)公式為
,求數(shù)列
的通項(xiàng)公式;
(2)證明:“數(shù)列單調(diào)遞增”是“
”的充要條件;
(3)若對任意
恒成立,證明:數(shù)列
的通項(xiàng)公式為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.
(1)寫出的普通方程和
的直角坐標(biāo)方程;
(2)若與
相交于
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)
的值:先請120名同學(xué)每人隨機(jī)寫下一個x,y都小于1的正實(shí)數(shù)對
,再統(tǒng)計(jì)其中x,y能與1構(gòu)成鈍角三角形三邊的數(shù)對
的個數(shù)m,最后根據(jù)統(tǒng)計(jì)個數(shù)m估計(jì)
的值.如果統(tǒng)計(jì)結(jié)果是
,那么可以估計(jì)
的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知圓,圓
,動圓
與圓
外切并且與圓
內(nèi)切,圓心
的軌跡為曲線
.
(Ⅰ)求的方程;
(Ⅱ)是與圓
,圓
都相切的一條直線,
與曲線
交于
,
兩點(diǎn),當(dāng)圓
的半徑最長時(shí),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知傾斜角為
的直線
過點(diǎn)
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.曲線
的極坐標(biāo)方程為
,直線
與曲線
分別交于
、
兩點(diǎn).
(1)寫出直線的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)若,求直線
的斜率
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)三次音樂獲得150分,出現(xiàn)兩次音樂獲得100分,出現(xiàn)一次音樂獲得50分,沒有出現(xiàn)音樂則獲得-300分.設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)若一盤游戲中僅出現(xiàn)一次音樂的概率為,求
的最大值點(diǎn)
;
(2)以(1)中確定的作為
的值,玩3盤游戲,出現(xiàn)音樂的盤數(shù)為隨機(jī)變量
,求每盤游戲出現(xiàn)音樂的概率
,及隨機(jī)變量
的期望
;
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科站技術(shù)員為了解某品種樹苗的生長情況,在該批樹苗中隨機(jī)抽取一個容量為100的樣本,測量樹苗高度(單位:).經(jīng)統(tǒng)計(jì),高度在區(qū)間
內(nèi),將其按
,
,
,
,
,
分成6組,制成如圖所示的頻率分布直方圖,其中高度不低于
的樹苗為優(yōu)質(zhì)樹苗.
附:
,其中
(1)求頻率分布直方圖中的值;
(2)已知所抽取的這100棵樹苗來自于甲、乙兩個地區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表所示,將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有
%的把握認(rèn)為優(yōu)質(zhì)樹苗與地區(qū)有關(guān)?
甲地區(qū) | 乙地區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹苗 | 5 | ||
非優(yōu)質(zhì)樹苗 | 25 | ||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次數(shù)學(xué)知識比賽中共有6個不同的題目,每位同學(xué)從中隨機(jī)抽取3個題目進(jìn)行作答,已知這6個題目中,甲只能正確作答其中的4個,而乙正確作答每個題目的概率均為,且甲、乙兩位同學(xué)對每個題目的作答都是相互獨(dú)立、互不影響的.
(1)求甲、乙兩位同學(xué)總共正確作答3個題目的概率;
(2)若甲、乙兩位同學(xué)答對題目個數(shù)分別是,
,由于甲所在班級少一名學(xué)生參賽,故甲答對一題得15分,乙答對一題得10分,求甲乙兩人得分之和
的期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com