【題目】已知函數(shù)(
,
,
),
是自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng),
時(shí),求函數(shù)
的零點(diǎn)個(gè)數(shù);
(Ⅱ)若,求
在
上的最大值.
【答案】(Ⅰ)2;(Ⅱ)見解析.
【解析】試題分析:(Ⅰ) ,
,由導(dǎo)數(shù)性質(zhì)得
是(0,+∞)上的增函數(shù),是(-∞,0)上的減函數(shù),由此能求出f(x)的零點(diǎn)個(gè)數(shù).
(Ⅱ)當(dāng)x∈[-1,1]時(shí),
,由導(dǎo)數(shù)性質(zhì)得f(x)是[-1,0]上的減函數(shù),[0,1]上的增函數(shù),由此利用導(dǎo)數(shù)性質(zhì)和構(gòu)造法能求出a的取值范圍.
試題解析:
(Ⅰ),∴
,∴
,
當(dāng)時(shí),
,∴
,故
是
上的增函數(shù),
當(dāng)時(shí),
,∴
,故
是
上的減函數(shù),
,
,∴存在
是
在
上的唯一零點(diǎn);
,
,∴存在
是
在
上的唯一零點(diǎn),
所以的零點(diǎn)個(gè)數(shù)為2.
(Ⅱ)
,
當(dāng)時(shí),由
,可知
,
,∴
,
當(dāng)時(shí),由
,可知
,
,∴
,
當(dāng)時(shí),
,
∴是
上的減函數(shù),
上的增函數(shù),
∴當(dāng)時(shí),
,
為
和
中的較大者.
而,設(shè)
(
),
∵
(當(dāng)且僅當(dāng)
時(shí)等號(hào)成立),
∴在
上單調(diào)遞增,而
,
∴當(dāng)時(shí),
,即
時(shí),
,∴
.
∴在
上的最大值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
,直線
與圓
交于
,
兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦
的長(zhǎng);
(2)動(dòng)點(diǎn)在圓
上(不與
,
重合),試求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱中,
為正方形,
為菱形,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)若是
中點(diǎn),
是二面角
的平面角,求直線
與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系
下的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是
,射線
:
與曲線
交于點(diǎn)
與直線
交于點(diǎn)
,求線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定映射f:(x,y)→(x+2y,2x﹣y),在映射f下(3,1)的原象為( )
A.(1,3)
B.(3,1)
C.(1,1)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2)時(shí),f(x)= ,若x∈[﹣4,﹣2)時(shí),f(x)≥
恒成立,則實(shí)數(shù)t的取值范圍是( )
A.[﹣2,0)∪(0,1)
B.[﹣2,0)∪[1,+∞)
C.[﹣2,1]
D.(﹣∞,﹣2]∪(0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,平面
平面
,底面
為梯形,
,且
與
均為正三角形,
為
的重心.
(1)求證: 平面
;
(2)求平面與平面
所成銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的上下頂點(diǎn)分別為
,且點(diǎn)
.
分別為橢圓
的左、右焦點(diǎn),且
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)是橢圓上異于
,
的任意一點(diǎn),過(guò)點(diǎn)
作
軸于
,
為線段
的中點(diǎn).直線與直線
交于點(diǎn)
,
為線段
的中點(diǎn),
為坐標(biāo)原點(diǎn).求
的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com