【題目】已知偶函數(shù).
(1)若方程有兩不等實(shí)根,求
的范圍;
(2)若在
上的最小值為2,求
的值.
【答案】(1);(2)
或
.
【解析】
(1)由偶函數(shù)的定義,利用,求得
的值,再由對(duì)數(shù)函數(shù)的單調(diào)性,結(jié)合題設(shè)條件,即可求解實(shí)數(shù)
的范圍;
(2)利用換元法和對(duì)勾函數(shù)的單調(diào)性,以及二次函數(shù)的閉區(qū)間上的求法,分類討論對(duì)稱軸和區(qū)間的關(guān)系,即可求解.
(1)因?yàn)?/span>,所以
的定義域?yàn)?/span>
,
因?yàn)?/span>是偶函數(shù),即
,
所以,故
,
所以,即方程
的解為一切實(shí)數(shù),所以
,
因?yàn)?/span>,且
,
所以原方程轉(zhuǎn)化為,
令,
,
所以所以
在
上是減函數(shù),
是增函數(shù),
當(dāng)時(shí),使
成立的
有兩個(gè)
,
又由知,
與
一一對(duì)應(yīng),
故當(dāng)時(shí),
有兩不等實(shí)根;
(2)因?yàn)?/span>,所以
,
所以,
令,則
,令
,設(shè)
,
則,
因?yàn)?/span>,所以
,即
在
上是增函數(shù),
所以,
設(shè),則
.
(i)當(dāng)時(shí),
的最小值為
,
所以,解得
,或4(舍去);
(ii)當(dāng)時(shí),
的最小值為
,不合題意;
(iii)當(dāng)時(shí),
的最小值為
,
所以,解得
,或
(舍去).
綜上知,或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是正方形,側(cè)面
底面
,
,
分別為
,
中點(diǎn),
.
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一點(diǎn)
,使
平面
?若存在,指出點(diǎn)
的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知高為3的正三棱柱的每個(gè)頂點(diǎn)都在球
的表面上,若球
的表面積為
,則異面直線
與
所成角的余弦值為
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
分別是定義在
上的偶函數(shù)和奇函數(shù),且
.
(1)求函數(shù),
的解析式;
(2)若對(duì)任意,不等式
恒成立,求實(shí)數(shù)
的最大值;
(3)設(shè),若函數(shù)
與
的圖象有且只有一個(gè)公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年微信用戶數(shù)量統(tǒng)計(jì)顯示,微信注冊(cè)用戶數(shù)量已經(jīng)突破
億.微信用戶平均年齡只有
歲,
的用戶在
歲以下,
的用戶在
歲之間,為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信的數(shù)量,現(xiàn)在從北京大學(xué)生中隨機(jī)抽取
位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:
微信群數(shù)量 | 頻數(shù) | 頻率 |
| ||
| ||
| ||
| ||
| ||
合計(jì) |
()求
,
,
的值.
()若從
位同學(xué)中隨機(jī)抽取
人,求這
人中恰有
人微信群個(gè)數(shù)超過
個(gè)的概率.
()以這
個(gè)人的樣本數(shù)據(jù)估計(jì)北京市的總體數(shù)據(jù)且以頻率估計(jì)概率,若從全市大學(xué)生中隨機(jī)抽取
人,記
表示抽到的是微信群個(gè)數(shù)超過
個(gè)的人數(shù),求
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的極坐標(biāo)方程為:ρ2-4ρcos(θ-
)+6=0.
(1)將極坐標(biāo)方程化為普通方程;
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)求當(dāng)時(shí),
恒成立的
的取值范圍,并證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它們?cè)趚=1處的切線互相平行.
(1)求b的值;
(2)若函數(shù)且方程F(x)=a2有且僅有四個(gè)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園雛鷹班的生活老師統(tǒng)計(jì)2018年上半年每個(gè)月的20日的晝夜溫差,
和患感冒的小朋友人數(shù)(
/人)的數(shù)據(jù)如下:
溫差 | ||||||
患感冒人數(shù) | 8 | 11 | 14 | 20 | 23 | 26 |
其中,
,
.
(Ⅰ)請(qǐng)用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合與
的關(guān)系;
(Ⅱ)建立關(guān)于
的回歸方程(精確到
),預(yù)測當(dāng)晝夜溫差升高
時(shí)患感冒的小朋友的人數(shù)會(huì)有什么變化?(人數(shù)精確到整數(shù))
參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):
,回歸直線方程是
,
,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com