日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若冬季晝夜溫差x(單位:)與某新品種反季節(jié)大豆的發(fā)芽數(shù)量y(單位:顆)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

          A.yx具有正相關關系

          B.回歸直線過點

          C.若冬季晝夜溫差增加,則該新品種反季節(jié)大豆的發(fā)芽數(shù)約增加2.5

          D.若冬季晝夜溫差的大小為,則該新品種反季節(jié)大豆的發(fā)芽數(shù)一定是22

          【答案】D

          【解析】

          根據(jù)線性回歸方程的相關計算,結(jié)合題意,進行逐一分析即可.

          因為回歸直線的斜率為2.5,所以yx具有正相關關系,A正確;

          回歸直線經(jīng)過樣本中心點,故過點,B正確;

          冬季晝夜溫差增加,則發(fā)芽數(shù)量的增加量即為回歸直線方程的斜率,

          則該新品種反季節(jié)大豆的發(fā)芽數(shù)約增加2.5顆,C正確;

          回歸直線方程只可預測,不是確定的值,故D錯誤.

          故選:D.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (1)討論的單調(diào)性;

          (2)時,,求的最大整數(shù)值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=ax+lnx(a∈R),g(x)=x2emx(m∈R,e為自然對數(shù)的底數(shù)).

          (1)討論函數(shù)f(x)的單調(diào)性及最值;

          (2)若a>0,且對x1,x2∈[0,2],f(x1+1)≥g(x2)+a﹣1恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

          試銷單價(元)

          4

          5

          6

          7

          8

          9

          產(chǎn)品銷量(件)

          q

          84

          83

          80

          75

          68

          已知,.

          (Ⅰ)求出的值;

          (Ⅱ)已知變量,具有線性相關關系,求產(chǎn)品銷量(件)關于試銷單價(元)的線性回歸方程;

          (Ⅲ)用表示用(Ⅱ)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求“好數(shù)據(jù)”至少有一個的概率.

          (參考公式:線性回歸方程中的最小二乘估計分別為,

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的一個焦點為,離心率為.為橢圓的左頂點,為橢圓上異于的兩個動點,直線與直線分別交于兩點.

          (I)求橢圓的方程;

          (II)若的面積之比為,求的坐標;

          (III)設直線軸交于點,若三點共線,求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)的導函數(shù),且,.

          1)求的解析式,并判斷零點的個數(shù);

          2)若,且對任意的恒成立,求k的最大值.(參考數(shù)據(jù):,

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在全國第五個扶貧日到來之前,某省開展精準扶貧,攜手同行的主題活動,某貧困縣調(diào)查基層干部走訪貧困戶數(shù)量.甲鎮(zhèn)有基層干部60人,乙鎮(zhèn)有基層干部60人,丙鎮(zhèn)有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從甲、乙、丙三鎮(zhèn)共選20名基層干部,統(tǒng)計他們走訪貧困戶的數(shù)量,并將走訪數(shù)量分成,,,5組,繪制成如圖所示的頻率分布直方圖.

          1)求這20人中有多少人來自丙鎮(zhèn),并估計甲、乙、丙三鎮(zhèn)的基層干部走訪貧困戶戶數(shù)的中位數(shù)(精確到整數(shù)位);

          2)如果把走訪貧困戶達到或超過35戶視為工作出色,求選出的20名基層干部中工作出色的人數(shù),并從中選2人做交流發(fā)言,求這2人中至少有一人走訪的貧困戶在的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy中,已知點O(0,0),M(-4,0),N(4,0),P(0,-2),Q(0,2),H(4,2).線段OM上的動點A滿足;線段HN上的動點B滿足.直線PA與直線QB交于點L,設直線PA的斜率記為k,直線QB的斜率記為k',則kk'的值為______;當λ變化時,動點L一定在______(填“圓、橢圓、雙曲線、拋物線”之中的一個)上.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直三棱柱中,,為棱的中點,.

          (1)證明:平面;

          (2)設二面角的正切值為,,,求異面直線所成角的余弦值.

          查看答案和解析>>

          同步練習冊答案