【題目】下表是某原料在市場上從2013年至2019年這7年中每年的平均價格(單位:千元/噸)數(shù)據(jù):
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
平均價格 (單位:千元/噸) |
(和
線性相關(guān)性較強,求出以
為解釋變量
為預(yù)報變量的線性回歸方程(系數(shù)精確到
);
(2)以(1)的結(jié)論為依據(jù),預(yù)測2032年該原料價格.預(yù)估該原料價格在哪一年突破1萬元/噸?
參考數(shù)據(jù):,
,
,
參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紋樣是中國傳統(tǒng)文化的重要組成部分,它既代表著中華民族的悠久歷史、社會的發(fā)展進步,也是世界文化藝術(shù)寶庫中的巨大財富.小楠從小就對紋樣藝術(shù)有濃厚的興趣.收集了如下9枚紋樣微章,其中4枚鳳紋徽章,5枚龍紋微章.小楠從9枚徽章中任取3枚,則其中至少有一枚鳳紋徽章的概率為( ).
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中有16個格點(i,j),其中0≤i≤3,0≤j≤3.若在這16個點中任取n個點,這n個點中總存在4個點,這4個點是一個正方形的頂點,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知點到直線
的距離為3.
(1)求實數(shù)的值;
(2)設(shè)是直線
上的動點,
在線段
上,且滿足
,求點
軌跡方程,并指出軌跡是什么圖形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB=4,C是底面圓O上一點,且AC=2,點D為半徑OB的中點,連接PD.
(1)求證:PC在平面APB內(nèi)的射影是PD;
(2)若PA=4,求底面圓心O到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過拋物線
的焦點
,
上的點
與
的兩個焦點所構(gòu)成的三角形的周長為
.
(1)求的方程;
(2)若點關(guān)于原點
的對稱點為
,過點
作直線
交
于另一點
,交
軸于點
,且
∥
.判斷
是否為定值,若是求出該值;若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線C1:x=﹣2以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,C2極坐標(biāo)方程為:ρ2﹣2ρcosθ﹣4ρsinθ+4=0.
(1)求C1的極坐標(biāo)方程和C2的普通方程;
(2)若直線C3的極坐標(biāo)方程為,設(shè)C2與C3的交點為M,N,又C1:x=﹣2與x軸交點為H,求△HMN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,過橢圓
的左、右焦點
分別作傾斜角為
的直線
,且
之間的距離為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓
只有一個公共點,求點
到直線
的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,拋物線
上存在一點M,使得直線AM的斜率的最大值為1,圓Q的方程為
.
(1)求點M的坐標(biāo)和C的方程;
(2)若直線l交C于D,E兩點且直線MD,ME都與圓Q相切,證明直線l與圓Q相離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com