【題目】關于函數(shù),下列說法正確的是________.
①是
的最大值點.
②函數(shù)有且只有1個零點.
③存在正實數(shù),使得
恒成立.
④對任意兩個不相等的正實數(shù),若
,則
.
【答案】②④
【解析】
①對函數(shù)求導,結(jié)合函數(shù)極值的定義進行判斷即可;
②求函數(shù)的導數(shù),結(jié)合函數(shù)單調(diào)性及零點存在性定理,可判斷出零點個數(shù);
③利用參數(shù)分離法,構(gòu)造函數(shù),求函數(shù)的導數(shù),研究函數(shù)的單調(diào)性和極值進行判斷即可;
④設 ,則
,構(gòu)造函數(shù)并結(jié)合函數(shù)的單調(diào)性,可證明
,再結(jié)合
的單調(diào)性,可得到
,即可得到
.
對于①,的定義域為
,
,所以
時,
函數(shù)單調(diào)遞減,
時,函數(shù)
單調(diào)遞增,
所以是
的極小值點而不是最大值點,即①不正確;
對于②,令,
則,
則函數(shù)在
上單調(diào)遞減,
又,
,
所以函數(shù)有且只有1個零點,即②正確;
對于③,,可得
,
令,則
,
令,則
,
所以時,函數(shù)
單調(diào)遞增,
時,函數(shù)
單調(diào)遞減,
則,所以
,
即在
上函數(shù)單調(diào)遞減,且
,
無最小值,
所以不存在正實數(shù),使得
恒成立,即③不正確;
對于④,對任意兩個不相等的正實數(shù),
若,則
,④正確.
證明如下:
由函數(shù)在
上單調(diào)遞減,在
上單調(diào)遞增,
不妨設 ,則
,則
,
令,則
,令
,
則,則
,
所以在
上是減函數(shù),
所以,所以
,
又因為在
上單調(diào)遞增,所以
,
故,即④正確.
故答案為:②④
科目:高中數(shù)學 來源: 題型:
【題目】對兩個變量y和x進行回歸分析,則下列說法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程必過樣本點的中心
.
B.殘差平方和越小的模型,擬合的效果越好.
C.用相關指數(shù)來刻畫回歸效果,
的值越小,說明模型的擬合效果越好.
D.回歸分析是對具有相關關系的兩個變量進行統(tǒng)計分析的一種常用方法.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).
(1)求和
的直角坐標方程;
(2)若曲線截直線
所得線段的中點坐標為
,求
的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,函數(shù)在第一象限內(nèi)的圖像如圖所示,試做如下操作,把
軸上的區(qū)間
等分成
個小區(qū)間,在每一個小區(qū)間上作一個小矩形,使矩形的右端點落在函數(shù)
的圖像上.若用
,表示第
個矩形的面積,
表示這
個矩形的面積總和.
(Ⅰ)求的表達式;
(Ⅱ)請用數(shù)學歸納法證明等式:;
(Ⅲ)求的值,并說明
的幾何意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓
的左右焦點分別為的
、
,離心率為
;過拋物線
焦點
的直線交拋物線于
、
兩點,當
時,
點在
軸上的射影為
。連結(jié)
并延長分別交
于
、
兩點,連接
;
與
的面積分別記為
,
,設
.
(Ⅰ)求橢圓和拋物線
的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ABCD是矩形,四邊形ABEF為等腰梯形,且,平面ABCD⊥平面ABEF
(1)求證:BE⊥DF;
(2)求三棱錐C﹣AEF的體積V.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某連鎖餐廳新店開業(yè)打算舉辦一次食品交易會,招待新老顧客試吃項目經(jīng)理通過查閱最近5次食品交易會參會人數(shù)x(萬人)與餐廳所用原材料數(shù)量y(袋),得到如下統(tǒng)計表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數(shù)(萬人) | 13 | 9 | 8 | 10 | 12 |
原材料(袋) | 32 | 23 | 18 | 24 | 28 |
(1)根據(jù)所給5組數(shù)據(jù),求出y關于x的線性回歸方程
(2)已知購買原材料的費用C(元)與數(shù)量(袋)的關系為
,投入使用的每袋原材料相應的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有13萬人參加,根據(jù)(1)中求出的線性回歸方程,預測餐廳應購買多少袋原材料才能獲得最大利潤,最大利潤是多少?(注:利潤L=銷售收入-原材料費用)
參考公式:,
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了激勵業(yè)務員的積極性,對業(yè)績在60萬到200萬的業(yè)務員進行獎勵獎勵方案遵循以下原則:獎金y(單位:萬元)隨著業(yè)績值x(單位:萬元)的增加而增加,且獎金不低于1.5萬元同時獎金不超過業(yè)績值的5%.
(1)若某業(yè)務員的業(yè)績?yōu)?/span>100萬核定可得4萬元獎金,若該公司用函數(shù)(k為常數(shù))作為獎勵函數(shù)模型,則業(yè)績200萬元的業(yè)務員可以得到多少獎勵?(已知
,
)
(2)若采用函數(shù)作為獎勵函數(shù)模型試確定最小的正整數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com