日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在銳角△ABC中,角A、B、C的對邊分別為a、b、c,若a2=b2+bc,則 的取值范圍是

          【答案】( ,
          【解析】解:∵△ABC中,a2=b2+bc,

          又∵由余弦定理可得:a2=b2+c2﹣2bccosA,

          ∴b2+bc=b2+c2﹣2bccosA,整理可得:c=b(1+2cosA),

          ∴a2=b2+b2(1+2cosA)=b2(2+2cosA),

          = >0,

          ∴A>B

          ∴A是銳角△ABC中的最大角或是第二大角,

          ∵在銳角△ABC中,A∈( , ),cosA∈(0, ),可得:2+2cosA∈(2,3),

          = ∈( , ).

          所以答案是:( , ).

          【考點(diǎn)精析】關(guān)于本題考查的余弦定理的定義,需要了解余弦定理:;;才能得出正確答案.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an]的前n項(xiàng)和記為Sn , 且滿足Sn=2an﹣n,n∈N* (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)證明: +… (n∈N*)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,則輸出的n值為( ) 參考數(shù)據(jù): ,sin15°≈0.2588,sin7.5°≈0.1305.

          A.12
          B.24
          C.48
          D.96

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)= ,(a∈R)
          (1)若f(x)在x=0處取得極值,確定a的值.
          (2)若f(x)在R上為增函數(shù),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放a(1≤a≤4且a∈R)個單位的營養(yǎng)液,它在水中釋放的濃度y(克/升)隨著時間x(天)變化的函數(shù)關(guān)系式近似為y=af(x),其中f(x)= ,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
          (1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達(dá)幾天?
          (2)若先投放2個單位的營養(yǎng)液,3天后投放b個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求b的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱與底面垂直,AB=AC=1,AA1=2,且P,Q,M分別是BB1 , CC1 , B1C1的中點(diǎn),AB⊥AQ.

          (1)求證:AB⊥AC;
          (2)求證:AQ∥平面A1PM;
          (3)求AQ與平面BCC1B1所成角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知動直線l過點(diǎn) ,且與圓O:x2+y2=1交于A、B兩點(diǎn).
          (1)若直線l的斜率為 ,求△OAB的面積;
          (2)若直線l的斜率為0,點(diǎn)C是圓O上任意一點(diǎn),求CA2+CB2的取值范圍;
          (3)是否存在一個定點(diǎn)Q(不同于點(diǎn)P),對于任意不與y軸重合的直線l,都有PQ平分∠AQB,若存在,求出定點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個大型噴水池的中央有一個強(qiáng)力噴水柱,為了測量噴水柱噴水的高度,某人在噴水柱正西方向的點(diǎn)A測的水柱頂端的仰角為45°,沿點(diǎn)A向北偏東30°前進(jìn)100m到達(dá)點(diǎn)B.在B點(diǎn)測得水柱頂端的仰角為30°,則水柱的高度是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知命題甲:關(guān)于x的不等式x2+(a﹣1)x+a2>0的解集為R;命題乙:函數(shù)y=(2a2﹣a)x為增函數(shù),當(dāng)甲、乙有且只有一個是真命題時,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案