【題目】設(shè)函數(shù)f(x)= ,(a∈R)
(1)若f(x)在x=0處取得極值,確定a的值.
(2)若f(x)在R上為增函數(shù),求a的取值范圍.
【答案】
(1)解:函數(shù)f(x)= ,
可得f′(x)= .
由f(x)在x=0處取得極值得f′(0)=0,解得a=1
(2)解:由(1)得f′(x)= ,因?yàn)閒(x)在R上增函數(shù),
∴f′(x)≥0恒成立,即cosx﹣sinx≥a恒成立,
∴ sin(
﹣x)≥a恒成立,
∴a≤﹣ .
【解析】(1)求出函數(shù)的導(dǎo)數(shù),利用函數(shù)的極值,轉(zhuǎn)化求解a即可.(2)利用函數(shù)的單調(diào)性,推出不等式,然后求解a的范圍即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞減),還要掌握函數(shù)的極值與導(dǎo)數(shù)(求函數(shù)
的極值的方法是:(1)如果在
附近的左側(cè)
,右側(cè)
,那么
是極大值(2)如果在
附近的左側(cè)
,右側(cè)
,那么
是極小值)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在 中,內(nèi)角
,
,
所對(duì)的邊分別為
,
,
,已知
,
.
(1)當(dāng) 時(shí),求
的面積;
(2)求 周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l經(jīng)過(guò)直線(xiàn)l1:2x﹣y﹣1=0與直線(xiàn)l2:x+2y﹣3=0的交點(diǎn)P,且與直線(xiàn)l3:x﹣y+1=0垂直.
(1)求直線(xiàn)l的方程;
(2)若直線(xiàn)l與圓C:(x﹣a)2+y2=8相交于P,Q兩點(diǎn),且 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)(1,﹣2)和( ,0)在直線(xiàn)l:ax﹣y﹣1=0(a≠0)的兩側(cè),則直線(xiàn)l的傾斜角的取值范圍是( )
A.( ,
)
B.( ,
)
C.( ,
)
D.(0, )∪(
,π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓上的點(diǎn)A(2,3)關(guān)于直線(xiàn)x+2y=0的對(duì)稱(chēng)點(diǎn)仍在圓上,且與直線(xiàn)x﹣y+1=0相交的弦長(zhǎng)為2 ,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)(0,3)的直線(xiàn)與拋物線(xiàn)交于A,B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)交x軸于點(diǎn)D,若|AF|+|BF|=6,則點(diǎn)D的橫坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若對(duì)一切x>5,均有f(x)≥(m+2)x﹣m﹣15成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com