日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,有一邊長為2米的正方形鋼板缺損一角(圖中的陰影部分),邊緣線是以直線為對稱軸,以線段的中點為頂點的拋物線的一部分.工人師傅要將缺損一角切割下來,使剩余的部分成為一個直角梯形.

          (Ⅰ)請建立適當?shù)闹苯亲鴺讼,求陰影部分的邊緣線的方程;
          (Ⅱ)如何畫出切割路徑,使得剩余部分即直角梯形的面積最大?
          并求其最大值.

          (I) .(Ⅱ)當時,可使剩余的直角梯形的面積最大,其最大值為.  

          解析試題分析:(I)以為原點,直線軸,建立如圖所示的直角坐標系,

          依題意
          可設(shè)拋物線弧的方程為
          ∵點的坐標為, ∴,
          故邊緣線的方程為.
          (Ⅱ)要使梯形的面積最大,則所在的直線必與拋物線弧相切,設(shè)切點坐標為,   ∵
          ∴直線的的方程可表示為,即 , 由此可求得,.
          ,   ,
          設(shè)梯形的面積為,則
          . ∴當時,
          的最大值為. 此時.
          答:當時,可使剩余的直角梯形的面積最大,其最大值為.  
          考點:本題主要考查拋物線在實際問題中的應(yīng)用以及二次函數(shù)的圖象和性質(zhì)。
          點評:解應(yīng)用題常用的方法是依據(jù)題意建立等量關(guān)系,構(gòu)造數(shù)學模型利用函數(shù)的性質(zhì)進行求解,而有些應(yīng)用題有明顯的幾何意義,可以考慮利用解析法根據(jù)題意建立適當?shù)淖鴺讼,?gòu)造曲線方程,利用曲線的性質(zhì)進行求解.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          計算下列定積分(本小題滿分12分)
          (1)            (2)
          (3)                (4)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          求函數(shù)在區(qū)間上的最值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)試用含的代數(shù)式表示;
          (Ⅱ)求的單調(diào)區(qū)間;
          (Ⅲ)令,設(shè)函數(shù)處取得極值,記點,證明:線段與曲線存在異于、的公共點;

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本小題滿分13分)
          已知函數(shù)
          (1)判斷的單調(diào)性;
          (2)記若函數(shù)有兩個零點,求證

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (10分)設(shè)函數(shù).
          ⑴ 求的極值點;
          ⑵ 若關(guān)于的方程有3個不同實根,求實數(shù)a的取值范圍.
          ⑶ 已知當恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (12分)已知函數(shù)上是單調(diào)遞增函數(shù),求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),當時,;當時,.
          (1)求在[0,1]內(nèi)的值域;
          (2)為何值時,不等式在[1,4]上恒成立.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (14分)設(shè)函數(shù).
          (1)當時,求的極值;
          (2)當時,求的單調(diào)區(qū)間;
          (3)若對任意,恒有成立,求的取值范圍

          查看答案和解析>>

          同步練習冊答案