日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          2
          2
          ,右焦點(diǎn)為F(1,0).
          (Ⅰ)求此橢圓的方程;
          (Ⅱ)若過點(diǎn)F且傾斜角為
          π
          4
          的直線與此橢圓相交于A,B兩點(diǎn),求|AB|的值.
          (Ⅰ)由題意
          c
          a
          =
          2
          2
          ,c=1
          ,得a=
          2
          ,b=1
          ,…(4分)
          ∴橢圓的方程為
          x2
          2
          +y2=1
          …(6分)
          (Ⅱ)過點(diǎn)F且傾斜角為
          π
          4
          的直線方程為y=x-1.
          x2
          2
          +y2=1
          y=x-1
          得3x2-4x=0,解得x1=0,x2=
          4
          3
          …(10分)
          |AB|=
          2
          |x1-x2|=
          4
          2
          3
          .…(12分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,F(xiàn)是橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的一個(gè)焦點(diǎn),A,B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為
          1
          2
          .點(diǎn)C在x軸上,BC⊥BF,B,C,F(xiàn)三點(diǎn)確定的圓M恰好與直線l1x+
          3
          y+3=0
          相切.
          (Ⅰ)求橢圓的方程:
          (Ⅱ)過點(diǎn)A的直線l2與圓M交于PQ兩點(diǎn),且
          MP
          MQ
          =-2
          ,求直線l2的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,點(diǎn)A、B分別是橢圓
          x2
          36
          +
          y2
          20
          =1
          的長軸的左、右端點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),直線PF的方程為
          3
          x+y-3
          2
          =0
          ,且PA⊥PF.
          (Ⅰ)求直線PA的方程;
          (Ⅱ)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知三點(diǎn)P(5,2)、F1(-6,0)、F2(6,0).
          (Ⅰ)求以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)點(diǎn)P、F1、F2關(guān)于直線y=x的對稱點(diǎn)分別為P′、F1′、F2′,求以F1′、F2′為焦點(diǎn)且過點(diǎn)P′的雙曲線的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          (A題)已知點(diǎn)P是圓x2+y2=4上一動(dòng)點(diǎn),直線l是圓在P點(diǎn)處的切線,動(dòng)拋物線以直線l為準(zhǔn)線且恒經(jīng)過定點(diǎn)A(-1,0)和B(1,0),則拋物線焦點(diǎn)F的軌跡為( 。
          A.圓B.橢圓C.雙曲線D.拋物線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e=
          3
          2
          ,橢圓C的上、下頂點(diǎn)分別為A1,A2,左、右頂點(diǎn)分別為B1,B2,左、右焦點(diǎn)分別為F1,F(xiàn)2.原點(diǎn)到直線A2B2的距離為
          2
          5
          5

          (1)求橢圓C的方程;
          (2)過原點(diǎn)且斜率為
          1
          2
          的直線l,與橢圓交于E,F(xiàn)點(diǎn),試判斷∠EF2F是銳角、直角還是鈍角,并寫出理由;
          (3)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2,分別交x軸于點(diǎn)N,M,若直線OT與過點(diǎn)M,N的圓G相切,切點(diǎn)為T.證明:線段OT的長為定值,并求出該定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知定點(diǎn)F1(-
          3
          ,0),F(xiàn)2
          3
          ,0),動(dòng)點(diǎn)R在曲線C上運(yùn)動(dòng)且保持|RF1|+|RF2|的值不變,曲線C過點(diǎn)T(0,1),
          (Ⅰ)求曲線C的方程;
          (Ⅱ)M是曲線C上一點(diǎn),過點(diǎn)M作斜率分別為k1和k2的直線MA,MB交曲線C于A、B兩點(diǎn),若A、B關(guān)于原點(diǎn)對稱,求k1•k2的值;
          (Ⅲ)直線l過點(diǎn)F2,且與曲線C交于PQ,有如下命題p:“當(dāng)直線l垂直于x軸時(shí),△F1PQ的面積取得最大值”.判斷命題p的真假.若是真命題,請給予證明;若是假命題,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          以拋物線y2=4x的焦點(diǎn)為右焦點(diǎn)的橢圓,上頂點(diǎn)為B2,右頂點(diǎn)為A2,左、右焦點(diǎn)為F1、F2,且|
          F1B2
          |cos∠B2F1F2=
          3
          3
          |
          OB2
          |,過點(diǎn)D(0,2)的直線l,斜率為k(k>0),l與橢圓交于M,N兩點(diǎn).
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)若M,N的中點(diǎn)為H,且
          OH
          A2B2
          ,求出斜率k的值;
          (3)在x軸上是否存在點(diǎn)Q(m,0),使得以QM,QN為鄰邊的四邊形是個(gè)菱形?如果存在,求出m的范圍;否則,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,A1、A2、F1、F2分別是雙曲線C:
          x2
          9
          -
          y2
          16
          =1的左、右頂點(diǎn)和左、右焦點(diǎn),M(x0、y0)是雙曲線C上任意一點(diǎn),直線MA2與動(dòng)直線l:x=
          9
          x0
          相交于點(diǎn)N.
          (1)求點(diǎn)N的軌跡E的方程;
          (2)點(diǎn)B為曲線E上第一象限內(nèi)的一點(diǎn),連接F1B交曲線E于另一點(diǎn)D,記四邊形A1A2BD對角線的交點(diǎn)為G,證明:點(diǎn)G在定直線上.

          查看答案和解析>>

          同步練習(xí)冊答案