已知函數(shù)(
)
(1)若曲線在點(diǎn)
處的切線平行于
軸,求
的值;
(2)當(dāng)時,若直線
與曲線
在
上有公共點(diǎn),求
的取值范圍.
(1);(2)
.
解析試題分析: (1)由導(dǎo)數(shù)的幾何意義,在
處的導(dǎo)函數(shù)值,等于在該點(diǎn)的切線的斜率;
(2)兩曲線在上有公共點(diǎn),即
在
上有解,從而,將
表示成
的函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,達(dá)到確定
的范圍之目的.
試題解析:(1),因為
在
處的切線平行于
軸,所以,
,
即;
(2)時,
,依題意可令
在
上有解,
整理得,令
,
,
,
單調(diào)遞增;
,
單調(diào)遞減,則
,故
.
考點(diǎn):導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),曲線
過點(diǎn)
,且在
點(diǎn)處的切線斜率為2.
(1)求a和b的值; (2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(其中
),且方程
的兩個根分別為
、
.
(1)當(dāng)且曲線
過原點(diǎn)時,求
的解析式;
(2)若在
無極值點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若試確定函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意
,
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)令若至少存在一個實(shí)數(shù)
,使
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時,求函數(shù)
在
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對于任意的,
總成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù),
,過點(diǎn)
作函數(shù)
圖象的所有切線,令各切點(diǎn)得橫坐標(biāo)構(gòu)成數(shù)列
,求數(shù)列
的所有項之和
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com