已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對于任意的,
總成立,求實數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù),
,過點(diǎn)
作函數(shù)
圖象的所有切線,令各切點(diǎn)得橫坐標(biāo)構(gòu)成數(shù)列
,求數(shù)列
的所有項之和
的值.
(Ⅰ);(Ⅱ)
;(Ⅲ)
.
解析試題分析:(Ⅰ)利用到導(dǎo)數(shù)法求解;(Ⅱ)構(gòu)造新函數(shù),用導(dǎo)數(shù)法求解;(Ⅲ)利用導(dǎo)數(shù)的幾何意義求切線方程,將的坐標(biāo)代入切線方程,求得
,再利用兩個函數(shù)的圖像均關(guān)于點(diǎn)
對稱,它們交點(diǎn)的橫坐標(biāo)也關(guān)于
對稱成對出現(xiàn).方程
,
的根即所作的所有切線的切點(diǎn)橫坐標(biāo)構(gòu)成的數(shù)列
的項也關(guān)于
對稱成對出現(xiàn),在
內(nèi)共構(gòu)成1006對.
試題解析:(Ⅰ)由于,
所以. (2分)
當(dāng),即
時,
;
當(dāng),即
時,
.
所以的單調(diào)遞增區(qū)間為
,
單調(diào)遞減區(qū)間為. (4分)
(Ⅱ)令,要使
總成立,只需
時
.
對求導(dǎo)得
,
令,則
,(
)
所以在
上為增函數(shù),所以
. (6分)
對分類討論:
① 當(dāng)時,
恒成立,所以
在
上為增函數(shù),所以
,即
恒成立;
② 當(dāng)時,
在上有實根
,因為
在
上為增函數(shù),
所以當(dāng)時,
,所以
,不符合題意;
③ 當(dāng)時,
恒成立,所以
在
上為減函數(shù),則
,不符合題意.
綜合①②③可得,所求的實數(shù)的取值范圍是
. (9分)
(Ⅲ)因為,所以
,
設(shè)切點(diǎn)坐標(biāo)為,則斜率為
,
切線方程為, (11分)
將的坐標(biāo)代入切線方程,得
,即
, &
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(Ⅰ)若,求函數(shù)
的單調(diào)區(qū)間并比較
與
的大小關(guān)系
(Ⅱ)若函數(shù)的圖象在點(diǎn)
處的切線的傾斜角為
,對于任意的
,函數(shù)
在區(qū)間
上總不是單調(diào)函數(shù),求
的取值范圍;
(Ⅲ)求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
)
(1)若曲線在點(diǎn)
處的切線平行于
軸,求
的值;
(2)當(dāng)時,若直線
與曲線
在
上有公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間
上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實數(shù)m的取值范圍;
(2)當(dāng)m=2時,求函數(shù)f(x)在[1,e]上的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,
.
(1)求證:函數(shù)在
上單調(diào)遞增;
(2)若函數(shù)有四個零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分共12分)已知函數(shù),曲線
在點(diǎn)
處切線方程為
。
(Ⅰ)求的值;
(Ⅱ)討論的單調(diào)性,并求
的極大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時,求曲線
在
處的切線方程;
(2)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對于
[1,2],
[0,1],使
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com