【題目】已知,
.
(1)若為真命題,求實(shí)數(shù)
的取值范圍;
(2)若是
成立的充分不必要條件,求實(shí)數(shù)
的取值范圍.
【答案】:(1)-2≤x≤8.(2)m≥6.
【解析】試題分析:
(1)求解一元二次不等式可得p為真命題時(shí)實(shí)數(shù)x的取值范圍是-2≤x≤8;
(2)結(jié)合(1)的結(jié)論得到關(guān)于實(shí)數(shù)m的不等式組,求解不等式組可得實(shí)數(shù)m的取值范圍是m≥6.
試題解析:
(1)由-x2+6x+16≥0,解得-2≤x≤8;
所以當(dāng)p為真命題時(shí),實(shí)數(shù)x的取值范圍為-2≤x≤8.
(2)解法一:若q為真,可由x2-4x+4-m2≤0(m>0),解得2-m≤x≤2+m(m>0).
若p是q成立的充分不必要條件,則[-2,8]是[2-m,2+m]的真子集,
所以 (兩等號(hào)不同時(shí)成立),得m≥6.
所以實(shí)數(shù)m的取值范圍是m≥6.
解法二:設(shè)f(x)=x2-4x+4-m2(m>0),
若p是q成立的充分不必要條件,
∵x2-4x+4-m2≤0在[-2,8]恒成立,
則有 (兩等號(hào)不同時(shí)成立),解得m≥6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:關(guān)于x的不等式|x﹣2|+|x+2|>m的解集是R; q:關(guān)于x的不等式x2+mx+4>0的解集是R.則p成立是q成立的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.即不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
.
(Ⅰ)若在區(qū)間
上為增函數(shù),求
的取值范圍;
(Ⅱ)當(dāng)時(shí),證明:
;
(Ⅲ)當(dāng)時(shí),試判斷方程
是否有實(shí)數(shù)解,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1+a5=17.
(1)若{an}還同時(shí)滿足: ①{an}為等比數(shù)列;②a2a4=16;③對(duì)任意的正整數(shù)n,a2n<a2n+2 , 試求數(shù)列{an}的通項(xiàng)公式.
(2)若{an}為等差數(shù)列,且S8=56. ①求該等差數(shù)列的公差d;②設(shè)數(shù)列{bn}滿足bn=3nan , 則當(dāng)n為何值時(shí),bn最大?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)和
.
(1)討論函數(shù)的奇偶性;
(2)當(dāng)時(shí),求函數(shù)
在區(qū)間
上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(I) 討論函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若函數(shù)
在區(qū)間
上的最大值為3,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)(an , Sn)(n∈N*)都在函數(shù)f(x)= 的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an3n , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,點(diǎn)D是AB的中點(diǎn).求證:
(1)AC⊥BC1;
(2)AC1∥平面B1CD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com