【題目】在平面直角坐標(biāo)系中,已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓
的右焦點(diǎn)為
,且離心率
,過(guò)點(diǎn)
且斜率為
的直線
交橢圓
于點(diǎn)
,
兩點(diǎn),
為
的中點(diǎn),過(guò)
作直線
的垂線
,直線
與直線
相交于點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:點(diǎn)在一條定直線上;
(3)當(dāng)最大時(shí),求
的面積.
【答案】(1)(2)證明見(jiàn)解析(3)
【解析】
(1)由焦點(diǎn)坐標(biāo)、離心率和橢圓關(guān)系可構(gòu)造方程組求得
,進(jìn)而得到橢圓方程;
(2)設(shè),與橢圓方程聯(lián)立得到韋達(dá)定理的形式,進(jìn)而得到
中點(diǎn)
的坐標(biāo),進(jìn)而得到直線
方程,與直線
方程聯(lián)立后可求得
點(diǎn)坐標(biāo),知
點(diǎn)橫坐標(biāo)為定值
,從而得到結(jié)論;
(3)利用直線和
的斜率可結(jié)合兩角和差正切公式表示出
,利用基本不等式可求得
的最大值,由取等條件可得此時(shí)
的值和
點(diǎn)坐標(biāo);利用弦長(zhǎng)公式和點(diǎn)到直線距離公式分別求得三角形的底和高,進(jìn)而得到所求面積.
(1)橢圓
的右焦點(diǎn)為
,
.
又,
,
.
橢圓
的標(biāo)準(zhǔn)方程為:
.
(2)設(shè),
,
中點(diǎn)
,直線
:
,
聯(lián)立方程組,化簡(jiǎn)得:
,
,
,
將代入直線
的方程,得點(diǎn)
的坐標(biāo)為
,
,
直線
的方程為
.
直線
過(guò)橢圓的右焦點(diǎn)
且與直線
垂直,
直線
的方程為
.
解方程組得:
,
點(diǎn)
在定直線
上.
(3)設(shè)直線的傾斜角為
,直線
的傾斜角為
.
由(2)可知:,
.
.
當(dāng)且僅當(dāng),即
時(shí)
取最大值,此時(shí)
最大.
此時(shí)直線方程為
,點(diǎn)
為
.
由(2)可得:,
,
,
弦長(zhǎng)
,
到直線
的距離
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”《中華人民共和國(guó)道路交通安全法》第
條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣
分,罰款
元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的
個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 | |||||
不“禮讓斑馬線”駕駛員人數(shù) |
(1)請(qǐng)利用所給數(shù)據(jù)求不“禮讓斑馬線”駕駛員人數(shù)與月份
之間的回歸直線方程
,并預(yù)測(cè)該路口
月份的不“禮讓斑馬線”駕駛員人數(shù);
(2)若從表中月份和
月份的不“禮讓斑馬線”駕駛員中,采用分層抽樣方法抽取一個(gè)容量為
的樣本,再?gòu)倪@
人中任選
人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來(lái)自同一月份的概率.
參考公式:,
.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是正方形,
底面
,
,點(diǎn)E是
的中點(diǎn),點(diǎn)F在邊
上移動(dòng).
(Ⅰ)若F為中點(diǎn),求證:
平面
;
(Ⅱ)求證:;
(Ⅲ)若二面角的余弦值等于
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別是
,
,
,
是其左右頂點(diǎn),點(diǎn)
是橢圓
上任一點(diǎn),且
的周長(zhǎng)為6,若
面積的最大值為
.
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)且斜率不為0的直線交橢圓
于
,
兩個(gè)不同點(diǎn),證明:直線
與
的交點(diǎn)在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在四棱錐中,底面
為矩形,側(cè)面
底面
,
,
.
(1)求二面角的大;
(2)求點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)拋擲兩枚骰子,記事件為“朝上的2個(gè)數(shù)之和為偶數(shù)”,事件
為“朝上的2個(gè)數(shù)均為偶數(shù)”,則
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子公司新開(kāi)發(fā)一電子產(chǎn)品,該電子產(chǎn)品的一個(gè)系統(tǒng)G有3個(gè)電子元件組成,各個(gè)電子元件能否正常工作的概率均為,且每個(gè)電子元件能否正常工作相互獨(dú)立.若系統(tǒng)C中有超過(guò)一半的電子元件正常工作,則G可以正常工作,否則就需要維修,且維修所需費(fèi)用為500元.
(1)求系統(tǒng)不需要維修的概率;
(2)該電子產(chǎn)品共由3個(gè)系統(tǒng)G組成,設(shè)E為電子產(chǎn)品需要維修的系統(tǒng)所需的費(fèi)用,求的分布列與期望;
(3)為提高G系統(tǒng)正常工作概率,在系統(tǒng)內(nèi)增加兩個(gè)功能完全一樣的其他品牌的電子元件,每個(gè)新元件正常工作的概率均為,且新增元件后有超過(guò)一半的電子元件正常工作,則C可以正常工作,問(wèn):
滿足什么條件時(shí),可以提高整個(gè)G系統(tǒng)的正常工作概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若,求曲線
在
處切線的斜率;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對(duì)任意
,均存在
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:
,且對(duì)任意
,
(s,k,l,
)都有
,則稱數(shù)列
為“T”數(shù)列.
(1)證明:正項(xiàng)無(wú)窮等差數(shù)列是“T”數(shù)列;
(2)記正項(xiàng)等比數(shù)列的前n項(xiàng)之和為
,若數(shù)列
是“T”數(shù)列,求數(shù)列
公比的取值范圍;
(3)若數(shù)列是“T”數(shù)列,且數(shù)列
的前n項(xiàng)之和
滿足
,求證:數(shù)列
是等差數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com