日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)f(x)在R上的導函數(shù)為f'(x),對于任意的實數(shù)x,都有f'(x)+2017<4034x,若f(t+1)<f(﹣t)+4034t+2017,則實數(shù)t的取值范圍是(
          A.
          B.
          C.
          D.

          【答案】A
          【解析】解:設g(x)=f(x)﹣2017x2+2017x, 則g′(x)=f′(x)﹣4034x+2017<0,
          故g(x)在R遞減,
          而g(t+1)﹣g(﹣t)=f(t+1)﹣f(﹣t)﹣4034t﹣2017<0,
          即g(t+1)<g(﹣t),
          故t+1>﹣t,解得:t>﹣ ,
          故選:A.
          【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調性的相關知識點,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減才能正確解答此題.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知雙曲線 , )的左、右焦點分別為、 的直線交雙曲線右支于 , 兩點, , ,則雙曲線的離心率為__________

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(本小題滿分12分)如圖,曲線由上半橢圓和部分拋物線 連接而成, 的公共點為,其中的離心率為.

          )求的值;

          )過點的直線分別交于(均異于點),若,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知點分別是Δ的邊的中點,連接.現(xiàn)將沿折疊至Δ的位置,連接.記平面 與平面 的交線為 ,二面角大小為.

          (1)證明:

          (2)證明:

          (3)求平面與平面 所成銳二面角大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】將函數(shù) 的圖象向左平移 個單位,再向下平移4個單位,得到函數(shù)g(x)的圖象,則函數(shù)f(x)的圖象與函數(shù)g(x)的圖象(
          A.關于點(﹣2,0)對稱
          B.關于點(0,﹣2)對稱
          C.關于直線x=﹣2對稱
          D.關于直線x=0對稱

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,四邊形AMNC為等腰梯形,△ABC為直角三角形,平面AMNC與平面ABC垂直,AB=BC,AM=CN,點O、D、E分別是AC、MN、AB的中點.過點E作平行于平面AMNC的截面分別交BD、BC于點F、G,H是FG的中點.
          (Ⅰ)證明:OB⊥EH;
          (Ⅱ)若直線BH與平面EFG所成的角的正弦值為 ,求二面角D﹣AC﹣H的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),且,則 的值(

          A. 恒為正數(shù) B. 恒等于零

          C. 恒為負數(shù) D. 可能大于零,也可能小于零

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù)f(x)=|x﹣2|+|x﹣a|,x∈R.
          (Ⅰ)求證:當a=﹣1時,不等式lnf(x)>1成立;
          (Ⅱ)關于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=|x﹣a|﹣|x+3|,a∈R.
          (1)當a=﹣1時,解不等式f(x)≤1;
          (2)若當x∈[0,3]時,f(x)≤4,求a的取值范圍.

          查看答案和解析>>

          同步練習冊答案