【題目】已知函數(shù)
(1)求函數(shù)的定義域;
(2)判定函數(shù)在
的單調(diào)性,并證明你的結(jié)論;
(3)若當(dāng)時,
恒成立,求正整數(shù)
的最大值.
【答案】(1) (2)減函數(shù) (3)3
【解析】試題分析:
(1)結(jié)合函數(shù)的解析式可得函數(shù)的定義域為 ;
(2)對函數(shù) 求導(dǎo),結(jié)合題意和導(dǎo)函數(shù)的解析式可得=-
<0,所以函數(shù)f(x)在區(qū)間(-1,0)上是減函數(shù).
(3)首先由不等式的性質(zhì)可得k的最大值不大于3,然后結(jié)合導(dǎo)函數(shù)的性質(zhì)可得滿足題意,即正整數(shù)
的最大值是3.
試題解析:
解:(Ⅰ)函數(shù)的定義域為
(Ⅱ)=
=-
設(shè)
,
故g(x)在(-1,0)上是減函數(shù),而g(x)>g(0)=1>0,
故=-
<0,
所以函數(shù)f(x)在區(qū)間(-1,0)上是減函數(shù).
(III)當(dāng)x>0時,f(x)>恒成立, 令x=1有k<2
又k為正整數(shù).∴k的最大值不大于3.
下面證明當(dāng)k=3時,f(x)>(x>0)恒成立.
即證當(dāng)x>0時,
+1-2x>0恒成立.
令g(x)=
+1-2x,則
=
-1,
當(dāng)x>e-1時, >0;當(dāng)0<x<e-1時,
<0.
∴當(dāng)x=e-1時,g(x)取得最小值g(e-1)=3-e>0.
∴當(dāng)x>0時,
+1-2x>0恒成立.
因此正整數(shù)k的最大值為3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足下列條件:在定義域內(nèi)存在
,使得
成立,則稱函數(shù)
具有性質(zhì)
;反之,若
不存在,則稱函數(shù)
不具有性質(zhì)
.
(Ⅰ)證明:函數(shù)具有性質(zhì)
,并求出對應(yīng)的
的值;
(Ⅱ)試分別探究形如①(
)、②
(
且
)、③
(
且
)的函數(shù),是否一定具有性質(zhì)
?并加以證明.
(Ⅲ)已知函數(shù)具有性質(zhì)
,求
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某校新、老校區(qū)之間開車單程所需時間為,
只與道路暢通狀況有關(guān),對其容量為
的樣本進行統(tǒng)計,結(jié)果如圖:
| 25 | 30 | 35 | 40 |
頻數(shù)(次) | 20 | 30 | 40 | 10 |
(1)求的分布列與數(shù)學(xué)期望
;
(2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時間不超過120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓
相交于
兩點,與
軸,
軸分別相交于點
和點
,且
,點
是點
關(guān)于
軸的對稱點,
的延長線交橢圓于點
,過點
分別做
軸的垂線,垂足分別為
.
(1) 若橢圓的左、右焦點與其短軸的一個端點是正三角形的三個頂點,點
在橢圓
上,求橢圓
的方程;
(2)當(dāng)時,若點
平分線段
,求橢圓
的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時刻航行至
處,此時測得其東北方向與它相距
海里的
處有一外國船只,且
島位于海監(jiān)船正東
海里處.
(1)求此時該外國船只與島的距離;
(2)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方向航行,為了將該船攔截在離
島
海里處,不讓其進入
島
海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某土特產(chǎn)銷售總公司為了解其經(jīng)營狀況,調(diào)查了其下屬各分公司月銷售額和利潤,得到數(shù)據(jù)如下表:
分公司名稱 | 雅雨 | 雅魚 | 雅女 | 雅竹 | 雅茶 |
月銷售額 | 3 | 5 | 6 | 7 | 9 |
月利潤額 | 2 | 3 | 3 | 4 | 5 |
在統(tǒng)計中發(fā)現(xiàn)月銷售額和月利潤額
具有線性相關(guān)關(guān)系.
(1)根據(jù)如下的參考公式與參考數(shù)據(jù),求月利潤額與月銷售額
之間的線性回歸方程;
(2)若該總公司還有一個分公司“雅果”月銷售額為10萬元,試估計它的月利潤額是多少?
(參考公式: ,
,其中:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng),
時,證明:
(其中
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形和
均為平行四邊形,點
在平面
內(nèi)的射影恰好為點
,以
為直徑的圓經(jīng)過點
,
,
的中點為
,
的中點為
,且
.
(Ⅰ)求證:平面平面
;
(Ⅱ)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在
之外的零件數(shù),求;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查.
下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得,
,其中
為抽取的第
個零件的尺寸,
.
用樣本平均數(shù)作為
的估計值
,用樣本標(biāo)準(zhǔn)差
作為
的估計值
,利用估計值判斷是否需對當(dāng)天的生產(chǎn)過程進行檢查?剔除
之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計
和
(精確到0.01).
附:若隨機變量服從正態(tài)分布
,則
,
,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com