日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓.

          1)曲線相交于,兩點(diǎn),上異于的點(diǎn),若直線的斜率為1,求直線的斜率;

          2)若的左焦點(diǎn)為,右頂點(diǎn)為,直線.過(guò)的直線相交于在第一象限)兩點(diǎn),與相交于,是否存在使的面積等于的面積與的面積之和.若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

          【答案】1;(2)直線不存在,理由見(jiàn)解析

          【解析】

          (1)設(shè),,,利用點(diǎn)差法可得,從而求出;

          (2)假設(shè)存在滿(mǎn)足題意,設(shè),,,,,,可得,設(shè):,,,,再聯(lián)立直線與橢圓方程,得到韋達(dá)定理,將之與②聯(lián)立求解,有解,則直線存在,無(wú)解,則直線不存在.

          (1)由已知設(shè),,,

          因?yàn)辄c(diǎn)均在橢圓,

          所以,,

          兩式相減得,

          ,,

          ;

          (2)設(shè),,,

          ,

          ,

          ,

          假設(shè)存在使得的面積等于的面積與的面積之和,

          ,,

          設(shè):,,,,

          ,將之代入,整理得,

          ,

          ,

          ②③聯(lián)立得,,

          把⑤代入④得,

          化簡(jiǎn)得,

          由于此方程無(wú)解,故所求直線不存在.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了提高生產(chǎn)線的運(yùn)行效率,工廠對(duì)生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對(duì)比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時(shí)間長(zhǎng)度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:

          (Ⅰ)(1)設(shè)所采集的40個(gè)連續(xù)正常運(yùn)行時(shí)間的中位數(shù),并將連續(xù)正常運(yùn)行時(shí)間超過(guò)和不超過(guò)的次數(shù)填入下面的列聯(lián)表:

          超過(guò)

          不超過(guò)

          改造前

          改造后

          試寫(xiě)出,,,的值;

          2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?

          附:,

          0.050

          0.010

          0.001

          3.841

          6.635

          10.828

          (Ⅱ)工廠的生產(chǎn)線的運(yùn)行需要進(jìn)行維護(hù).工廠對(duì)生產(chǎn)線的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種對(duì)生產(chǎn)線設(shè)定維護(hù)周期為天(即從開(kāi)工運(yùn)行到第天()進(jìn)行維護(hù).生產(chǎn)線在一個(gè)生產(chǎn)周期內(nèi)設(shè)置幾個(gè)維護(hù)周期,每個(gè)維護(hù)周期相互獨(dú)立.在一個(gè)維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運(yùn)行,則不會(huì)產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測(cè)算,正常維護(hù)費(fèi)為0.5萬(wàn)元次;保障維護(hù)費(fèi)第一次為0.2萬(wàn)元周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬(wàn)元.現(xiàn)制定生產(chǎn)線一個(gè)生產(chǎn)周期(以120天計(jì))內(nèi)的維護(hù)方案:,,2,34.以生產(chǎn)線在技術(shù)改造后一個(gè)維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】四個(gè)同樣大小的球,,兩兩相切,點(diǎn)是球上的動(dòng)點(diǎn),則直線與直線所成角的正弦值的取值范圍為( ).

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】國(guó)際上通常用年齡中位數(shù)指標(biāo)作為劃分國(guó)家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為年輕型人口;年齡中位數(shù)在2030歲為成年型人口;年齡中位數(shù)在30歲以上為老齡型人口.

          如圖反映了我國(guó)全面放開(kāi)二孩政策對(duì)我國(guó)人口年齡中位數(shù)的影響.據(jù)此,對(duì)我國(guó)人口年齡構(gòu)成的類(lèi)型做出如下判斷:①建國(guó)以來(lái)直至2000年為成年型人口;②從2010年至2020年為老齡型人口;③放開(kāi)二孩政策之后我國(guó)仍為老齡型人口.其中正確的是(

          A.②③B.①③C.D.①②

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】現(xiàn)有甲,乙兩種不透明充氣包裝的袋裝零食,每袋零食甲隨機(jī)附贈(zèng)玩具,,中的一個(gè),每袋零食乙從玩具,中隨機(jī)附贈(zèng)一個(gè).記事件:一次性購(gòu)買(mǎi)袋零食甲后集齊玩具,;事件:一次性購(gòu)買(mǎi)袋零食乙后集齊玩具,.

          1)求概率;

          2)已知,其中為常數(shù),求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在等比數(shù)列中,已知設(shè)數(shù)列的前n項(xiàng)和為,且

          1)求數(shù)列通項(xiàng)公式;

          2)證明:數(shù)列是等差數(shù)列;

          3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是九江市20194月至20203月每月最低氣溫與最高氣溫(℃)的折線統(tǒng)計(jì)圖:已知每月最低氣溫與最高氣溫的線性相關(guān)系數(shù)r0.83,則下列結(jié)論錯(cuò)誤的是(

          A.每月最低氣溫與最高氣溫有較強(qiáng)的線性相關(guān)性,且二者為線性正相關(guān)

          B.月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10

          C.912月的月溫差相對(duì)于58月,波動(dòng)性更大

          D.每月最高氣溫與最低氣溫的平均值在前6個(gè)月逐月增加

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

          1)求曲線,的普通方程;

          2)已知點(diǎn),若曲線交于,兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過(guò)個(gè)國(guó)家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國(guó)家或地區(qū)直接宣布“封國(guó)”或“封城”,隨著國(guó)外部分活動(dòng)進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開(kāi)始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:

          企業(yè)成立年份

          2019

          2018

          2017

          2016

          2015

          企業(yè)成立年限

          1

          2

          3

          4

          5

          倒閉企業(yè)數(shù)量(萬(wàn)家)

          5.28

          4.72

          3.58

          2.70

          2.15

          倒閉企業(yè)所占比例

          21.4%

          19.1%

          14.5%

          10.9%

          8.7%

          1)由所給數(shù)據(jù)可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

          2)建立關(guān)于的回歸方程,預(yù)測(cè)年成立的企業(yè)中倒閉企業(yè)所占比例.

          參考數(shù)據(jù):,,,,

          相關(guān)系數(shù),樣本的最小二乘估計(jì)公式為,.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案