日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知三點(diǎn)P(5,2)、F1(-6,0)、F2(6,0)。
          (1)求以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)點(diǎn)P、F1、F2關(guān)于直線y=x的對稱點(diǎn)分別為,求以為焦點(diǎn)且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程。

          (1);(2).

          解析試題分析:(1)根據(jù)橢圓的定義,,又,利用,可求出,從而得出橢圓的標(biāo)準(zhǔn)方程,本題要充分利用橢圓的定義.(2)由于F1、F2關(guān)于直線的對稱點(diǎn)在軸上,且關(guān)于原點(diǎn)對稱,故所求雙曲線方程為標(biāo)準(zhǔn)方程,同樣利用雙曲線的定義有,又,要注意的是雙曲線中有,故也能很快求出結(jié)論.
          試題解析:(1)由題意,可設(shè)所求橢圓的標(biāo)準(zhǔn)方程為,其半焦距,
          故所求橢圓的標(biāo)準(zhǔn)方程為;
          (2)點(diǎn)P(5,2)、(-6,0)、(6,0)關(guān)于直線y=x的對稱點(diǎn)分別為:,,設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為,由題意知半焦距=6,
            ∴,
          故所求雙曲線的標(biāo)準(zhǔn)方程為
          考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)雙曲線的標(biāo)準(zhǔn)方程.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn),過點(diǎn)的直線交拋物線于兩點(diǎn)。
          (Ⅰ)試問在軸上是否存在不同于點(diǎn)的一點(diǎn),使得軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)的坐標(biāo),若不存在說明理由。
          (Ⅱ)若的面積為,求向量的夾角;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),如果一個(gè)橢圓經(jīng)過點(diǎn)P(3,),且以點(diǎn)F(2,0)為它的一個(gè)焦點(diǎn).
          (1)求此橢圓的標(biāo)準(zhǔn)方程;
          (2)在(1)中求過點(diǎn)F(2,0)的弦AB的中點(diǎn)M的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知橢圓的離心率為,以橢圓的左頂點(diǎn)為圓心作圓,設(shè)圓與橢圓交于點(diǎn)與點(diǎn).(12分)

          (1)求橢圓的方程;(3分)
          (2)求的最小值,并求此時(shí)圓的方程;(4分)
          (3)設(shè)點(diǎn)是橢圓上異于,的任意一點(diǎn),且直線分別與軸交于點(diǎn)為坐標(biāo)原點(diǎn),求證:為定值.(5分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,且橢圓的離心率.
          (1)求橢圓的方程;
          (2)設(shè)橢圓的上下頂點(diǎn)分別為,是橢圓上異于的任一點(diǎn),直線分別交軸于點(diǎn),證明:為定值,并求出該定值;
          (3)在橢圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
          (Ⅰ)求拋物線的方程;
          (Ⅱ)當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
          (Ⅲ)當(dāng)點(diǎn)在直線上移動時(shí),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,點(diǎn)為動點(diǎn),、分別為橢圓的左、右焦點(diǎn).已知為等腰三角形.

          (1)求橢圓的離心率;
          (2)設(shè)直線與橢圓相交于兩點(diǎn),是直線上的點(diǎn),滿足,求點(diǎn)的軌跡
          方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,直線l與拋物線相交于不同的兩點(diǎn)A,B.
          (I)如果直線l過拋物線的焦點(diǎn),求的值;
          (II)如果,證明直線l必過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓長軸的左右端點(diǎn)分別為A,B,短軸的上端點(diǎn)為M,O為橢圓的中心,F(xiàn)為橢圓的右焦點(diǎn),且·=1,||=1.
          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
          (Ⅱ)若直線l交橢圓于P,Q兩點(diǎn),問:是否存在直線l,使得點(diǎn)F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案