在平面直角坐標(biāo)系中,直線l與拋物線
相交于不同的兩點(diǎn)A,B.
(I)如果直線l過拋物線的焦點(diǎn),求的值;
(II)如果,證明直線l必過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).
(I)-3.(II)直線l過定點(diǎn)(2,0).
解析試題分析:(I)注意到拋物線的焦點(diǎn)為(1,0),因此可設(shè)并代入拋物線y2=4x中消去
,
設(shè)應(yīng)用韋達(dá)定理得到
從而易于將
用坐標(biāo)表示.
(II)設(shè)代入方程
消去
得,
設(shè)
得到
.
將 用坐標(biāo)表示,得到
的方程,通過確定
,達(dá)到證明直線過定點(diǎn)的目的.
試題解析:(I)由題意知,拋物線的焦點(diǎn)為(1,0),
設(shè)代入拋物線
中消去x得,
,設(shè)
則
=
6分
(II)設(shè)代入方程
消去
得,
設(shè)
得到
∵=
=
=b2-4b.
令∴直線l過定點(diǎn)(2,0). 12分
考點(diǎn):拋物線的幾何性質(zhì),直線與拋物線的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn)
,且離心率
。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓
相交于
,
兩點(diǎn)(
不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為D,且滿足
,試判斷直線
是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三點(diǎn)P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P、F1、F2關(guān)于直線y=x的對(duì)稱點(diǎn)分別為,求以
為焦點(diǎn)且過
點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為
.從這個(gè)圓上任意一點(diǎn)
向
軸作垂線
,
為垂足.
(Ⅰ)求線段中點(diǎn)
的軌跡方程;
(Ⅱ)已知直線與
的軌跡相交于
兩點(diǎn),求
的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓經(jīng)過點(diǎn)
,離心率為
,過點(diǎn)
的直線
與橢圓
交于不同的兩點(diǎn)
.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在s軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P為橢圓C上的動(dòng)點(diǎn),M為過P且垂直于x軸的直線上的點(diǎn),=λ,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是拋物線
上的點(diǎn),
是
的焦點(diǎn), 以
為直徑的圓
與
軸的另一個(gè)交點(diǎn)為
.
(Ⅰ)求與
的方程;
(Ⅱ)過點(diǎn)且斜率大于零的直線
與拋物線
交于
兩點(diǎn),
為坐標(biāo)原點(diǎn),
的面積為
,證明:直線
與圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率
,點(diǎn)
在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線
交橢圓
與
、
兩點(diǎn),且
、
、
成等差數(shù)列,點(diǎn)M(1,1),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的長(zhǎng)軸長(zhǎng)為4,且過點(diǎn)
.
(1)求橢圓的方程;
(2)設(shè)、
、
是橢圓上的三點(diǎn),若
,點(diǎn)
為線段
的中點(diǎn),
、
兩點(diǎn)的坐標(biāo)分別為
、
,求證:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com