在平面直角坐標(biāo)系中,點(diǎn)
為動(dòng)點(diǎn),
、
分別為橢圓
的左、右焦點(diǎn).已知
為等腰三角形.
(1)求橢圓的離心率;
(2)設(shè)直線與橢圓相交于
、
兩點(diǎn),
是直線
上的點(diǎn),滿足
,求點(diǎn)
的軌跡
方程.
(1);(2)
.
解析試題分析:(1)先利用平面向量的數(shù)量積確定為鈍角,從而得到當(dāng)
時(shí),必有
,根據(jù)兩點(diǎn)間的距離公式列有關(guān)
、
、
的方程,求出
與
之間的等量關(guān)系,從而求出離心率的值;(2)先求出直線
的方程,與橢圓方程聯(lián)立求出交點(diǎn)
、
的坐標(biāo),利用
以及
、
、
三點(diǎn)共線列方程組消去
,從而得出點(diǎn)
的軌跡方程.
試題解析:(1)設(shè)橢圓的焦距為
,則
,
,
,
,
,
,所以
為鈍角,
由于為等腰三角形,
,
,即
,
即,整理得
,即
,
由于,故有
,即橢圓的離心率為
;
(2)易知點(diǎn)的坐標(biāo)為
,則直線
的斜率為
,
故直線的方程為
,由于
,
,
故橢圓的方程為,即
,
將直線的方程代入橢圓方程并化簡(jiǎn)得
,解得
或
,
于是得到點(diǎn),
,
(2)設(shè)點(diǎn)的坐標(biāo)為
,由于點(diǎn)
在直線
上,所以
,
,
,
,
即,
整理得,即點(diǎn)
的軌跡方程為
.
考點(diǎn):1.橢圓的方程;2.兩點(diǎn)間的距離;3.平面向量的數(shù)量積;4.動(dòng)點(diǎn)的軌跡方程
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、
分別是橢圓
的左、右焦點(diǎn),右焦點(diǎn)
到上頂點(diǎn)的距離為2,若
.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點(diǎn)是橢圓的右頂點(diǎn),直線
與橢圓交于
、
兩點(diǎn)(
在第一象限內(nèi)),又
、
是此橢圓上兩點(diǎn),并且滿足
,求證:向量
與
共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線:
和⊙
:
,過拋物線
上一點(diǎn)
作兩條直線與⊙
相切于
、
兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)
到拋物線準(zhǔn)線的距離為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)的角平分線垂直
軸時(shí),求直線
的斜率;
(Ⅲ)若直線在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三點(diǎn)P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P、F1、F2關(guān)于直線y=x的對(duì)稱點(diǎn)分別為,求以
為焦點(diǎn)且過
點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓以坐標(biāo)軸為對(duì)稱軸,且經(jīng)過點(diǎn)、
.記其上頂點(diǎn)為
,右頂點(diǎn)為
.
(1)求圓心在線段上,且與坐標(biāo)軸相切于橢圓焦點(diǎn)的圓的方程;
(2)在橢圓位于第一象限的弧上求一點(diǎn)
,使
的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為
.從這個(gè)圓上任意一點(diǎn)
向
軸作垂線
,
為垂足.
(Ⅰ)求線段中點(diǎn)
的軌跡方程;
(Ⅱ)已知直線與
的軌跡相交于
兩點(diǎn),求
的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓經(jīng)過點(diǎn)
,離心率為
,過點(diǎn)
的直線
與橢圓
交于不同的兩點(diǎn)
.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是拋物線
上的點(diǎn),
是
的焦點(diǎn), 以
為直徑的圓
與
軸的另一個(gè)交點(diǎn)為
.
(Ⅰ)求與
的方程;
(Ⅱ)過點(diǎn)且斜率大于零的直線
與拋物線
交于
兩點(diǎn),
為坐標(biāo)原點(diǎn),
的面積為
,證明:直線
與圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),
是拋物線
上相異兩點(diǎn),且滿足
.
(Ⅰ)若的中垂線經(jīng)過點(diǎn)
,求直線
的方程;
(Ⅱ)若的中垂線交
軸于點(diǎn)
,求
的面積的最大值及此時(shí)直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com