日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),常數(shù)).

          1)當(dāng)時(shí),討論函數(shù)的奇偶性并說(shuō)明理由;

          2)若函數(shù)在區(qū)間上單調(diào),求正數(shù)的取值范圍;

          3)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

          【答案】1)函數(shù)是偶函數(shù),詳見(jiàn)解析

          2)正數(shù)的取值范圍為

          3)實(shí)數(shù)的取值范圍為

          【解析】

          (1)利用定義法求的單調(diào)性;

          (2)根據(jù)復(fù)合函數(shù)單調(diào)性性質(zhì),原題可以轉(zhuǎn)變?yōu)?/span>在區(qū)間上單調(diào),從而研究的單調(diào)性,即可得出結(jié)論;

          (3)當(dāng)時(shí),不等式恒成立,當(dāng)時(shí),將題設(shè)不等式轉(zhuǎn)化為對(duì)任意恒成立,然后分別確定的最大值和最小值即可得出結(jié)論.

          (1)當(dāng)時(shí),,是偶函數(shù),理由如下:

          的定義域?yàn)?/span>,,

          因此當(dāng)時(shí)是偶函數(shù);

          (2)(),

          因?yàn)?/span>在區(qū)間上單調(diào),在定義域上單調(diào)遞增,

          所以在區(qū)間上單調(diào),

          ,

          其單調(diào)遞減區(qū)間為,

          所以,;

          (3)不等式對(duì)任意恒成立,

          對(duì)任意恒成立,

          ①當(dāng)時(shí),不等式恒成立;

          ②當(dāng)時(shí),則有對(duì)任意恒成立,

          設(shè),則其在上單調(diào)遞增,,

          設(shè),則其在上單調(diào)遞減,,

          所以;

          綜上所述,實(shí)數(shù)的取值范圍為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知圓的方程為,過(guò)點(diǎn)的直線(xiàn)與圓交于兩點(diǎn),

          1)若,求直線(xiàn)的方程;

          2)若直線(xiàn)軸交于點(diǎn),設(shè),,,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

          喜好體育運(yùn)動(dòng)

          不喜好體育運(yùn)動(dòng)

          合計(jì)

          男生

          5

          女生

          10

          合計(jì)

          50

          已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.

          (1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

          (2)能否在犯錯(cuò)概率不超過(guò)0.01的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明理由.

          附:

          0.10

          0.05

          0.025

          0.010

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題14分)設(shè),

          1)當(dāng)時(shí),求曲線(xiàn)處的切線(xiàn)方程;

          2)如果存在,使得成立,

          求滿(mǎn)足上述條件的最大整數(shù)

          3)如果對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若點(diǎn)P是直線(xiàn)2x+y+10=0上的動(dòng)點(diǎn),直線(xiàn)PA、PB分別與圓x2+y2=4相切于A、B兩點(diǎn),則四邊形PAOB(O為坐標(biāo)原點(diǎn))面積的最小值為________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】魯班鎖是中國(guó)傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀(guān)看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱(chēng),從外表上看,六根等長(zhǎng)的正四棱柱分成三組,經(jīng)榫卯起來(lái),如圖,若正四棱柱的高為,底面正方形的邊長(zhǎng)為,現(xiàn)將該魯班鎖放進(jìn)一個(gè)球形容器內(nèi),則該球形容器的表面積的最小值為( )(容器壁的厚度忽略不計(jì))

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線(xiàn)Cy2=2x的焦點(diǎn)為F,過(guò)焦點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A,B兩點(diǎn),過(guò)A,B作準(zhǔn)線(xiàn)的垂線(xiàn)交準(zhǔn)線(xiàn)與P,Q兩點(diǎn).RPQ的中點(diǎn).

          1)證明:以PQ為直徑的圓恒過(guò)定點(diǎn)F

          2)證明:ARFQ

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1)若,求的導(dǎo)數(shù);

          2)討論的單調(diào)區(qū)間;

          3)設(shè),若對(duì)任意,均存在,使得,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案