日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=|xex|,g(x)=f2(x)+λf(x),若方程g(x)=﹣1有且僅有4個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)λ的取值范圍是

          【答案】(﹣∞,﹣e﹣
          【解析】解:f(x)= , 當(dāng)x≥0時(shí),f′(x)=ex+xex=(1+x)ex>0,
          ∴f(x)在[0,+∞)上是增函數(shù),
          當(dāng)x<0時(shí),f′(x)=﹣ex﹣xex=(﹣1﹣x)ex
          ∴當(dāng)x<﹣1時(shí),f′(x)>0,當(dāng)﹣1<x<0時(shí),f′(x)<0,
          ∴f(x)在(﹣∞,﹣1]上是增函數(shù),在(﹣1,0)上是減函數(shù).
          當(dāng)x=﹣1時(shí),f(x)取得極大值f(﹣1)=
          令f(x)=t,
          又f(x)≥0,f(0)=0,
          則當(dāng)t<0時(shí),方程f(x)=t無解;
          當(dāng)t=0或t> 時(shí),方程f(x)=t有一解;
          當(dāng)t= 時(shí),方程f(x)=t有兩解;
          當(dāng)0 時(shí),方程f(x)=t有三解.
          ∵g(x)=f2(x)+λf(x)=﹣1有四個(gè)不同的實(shí)數(shù)解,
          ∴關(guān)于t的方程t2+λt+1=0在(0, )和( ,+∞)上各有一解,
          ,解得:λ<﹣e﹣
          所以答案是(﹣∞,﹣e﹣ ).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)y= sin(2x+ )﹣sinxcosx的單調(diào)減區(qū)間是(
          A.[kπ﹣ ,kπ+ ](k∈Z)
          B.[kπ﹣ ,kπ﹣ ](k∈Z)
          C.[kπ﹣ ,kπ+ ](k∈Z)
          D.[kπ+ ,kπ+ ](k∈Z)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校為提高學(xué)生身體素質(zhì),決定對畢業(yè)班的學(xué)生進(jìn)行身體素質(zhì)測試,每個(gè)同學(xué)共有4次測試機(jī)會(huì),若某次測試合格就不用進(jìn)行后面的測試,已知某同學(xué)每次參加測試合格的概率組成一個(gè)以 為公差的等差數(shù)列,若他參加第一次測試就通過的概率不足 ,恰好參加兩次測試通過的概率為
          (Ⅰ)求該同學(xué)第一次參加測試就能通過的概率;
          (Ⅱ)求該同學(xué)參加測試的次數(shù)的分布列和期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,由直線x=a,x=a+1(a>0),y=x2及 x 軸圍成的曲邊梯形的面積介于相應(yīng)小矩形與大矩形的面積之間,即 a2 x2dx<(a+1)2 . 類比之,若對n∈N*,不等式 <A< + +…+ 恒成立,則實(shí)數(shù)A等于(
          A.ln
          B.ln 2
          C. ln 2
          D. ln 5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{an}是公差為正數(shù)的等差數(shù)列,a2和 a5是方程x2﹣12x+27=0 的兩實(shí)數(shù)根,數(shù)列{bn}滿足3n1bn=nan+1﹣(n﹣1)an
          (Ⅰ)求an與bn;
          (Ⅱ)設(shè)Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn , 并求Tn<7 時(shí)n的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=xex1﹣a(x+lnx),a∈R.
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線為x軸,求a的值:
          (2)在(1)的條件下,求f(x)的單調(diào)區(qū)間;
          (3)若x>0,f(x)≥f(m)恒成立,且f(m)≥0,求證:f(m)≥2(m2﹣m3).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在學(xué)校組織的“環(huán)保知識(shí)”競賽活動(dòng)中,甲、乙兩班6名參賽選手的成績的莖葉圖受到不同程度的污損,如圖:
          (Ⅰ)求乙班總分超過甲班的概率;
          (Ⅱ)若甲班污損的學(xué)生成績是90分,乙班污損的學(xué)生成績?yōu)?7分,現(xiàn)從甲乙兩班所有選手成績中各隨機(jī)抽取2個(gè),記抽取到成績高于90分的選手的總?cè)藬?shù)為ξ,求ξ的分布列及數(shù)學(xué)成績.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線 C1 =1( a>0,b>0),圓 C2:x2+y2﹣2ax+ a2=0,若雙曲線C1 的一條漸近線與圓 C2 有兩個(gè)不同的交點(diǎn),則雙曲線 C1 的離心率的范圍是(
          A.(1,
          B.( ,+∞)
          C.(1,2)
          D.(2,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,雙曲線的中心在坐標(biāo)原點(diǎn)O,M、N分別為雙曲線虛軸的上、下端點(diǎn),A是雙曲線的右頂點(diǎn),F(xiàn)是雙曲線的右焦點(diǎn),直線AM與FN相交于點(diǎn)P,若∠APF是銳角,則此雙曲線的離心率的取值范圍是(
          A.( ,+∞)
          B.(1+ ,+∞)
          C.(0,
          D.( ,+∞)

          查看答案和解析>>

          同步練習(xí)冊答案