【題目】已知圓,直線
,動圓P與圓M相外切,且與直線l相切.設(shè)動圓圓心P的軌跡為E.
(1)求E的方程;
(2)若點(diǎn)A,B是E上的兩個動點(diǎn),O為坐標(biāo)原點(diǎn),且,求證:直線AB恒過定點(diǎn).
【答案】(1); (2)見解析
【解析】
(1)由拋物線定義可知動圓的圓心軌跡為拋物線,根據(jù)焦點(diǎn)及準(zhǔn)線方程可求得拋物線的標(biāo)準(zhǔn)方程.
(2)設(shè)出直線AB的方程,聯(lián)立拋物線,化簡后結(jié)合韋達(dá)定理,表示出,根據(jù)等量關(guān)系可求得直線方程的截距,即可求得所過定點(diǎn)的坐標(biāo).
(1)由題意動圓P與相切,且與定圓
外切
所以動點(diǎn)P到的距離與到直線
的距離相等
由拋物線的定義知,點(diǎn)P的軌跡是以為焦點(diǎn),直線
為準(zhǔn)線的拋物線
故所求P的軌跡方程E為
(2)證明:設(shè)直線,
,
,
將直線AB代入到中化簡得
,
所以,
又因?yàn)?/span>
所以
則直線AB為恒過定點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱中,已知
側(cè)面
.
(1)求證: 平面
;
(2)是棱長
上的一點(diǎn),若二面角
的正弦值為
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,
、
分別是棱
,
上的點(diǎn),,
(1) 求異面直線與
所成角的余弦值;
(2) 證明平面
(3) 求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
).
(1)當(dāng)時,求函數(shù)
的最小值;
(2)若時,
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的“十八大”之后,做好農(nóng)業(yè)農(nóng)村工作具有特殊重要的意義.國家為了更 好地服務(wù)于農(nóng)民、開展社會主義新農(nóng)村工作,派調(diào)查組到農(nóng)村某地區(qū)考察.該地區(qū)有100戶農(nóng) 民,且都從事蔬菜種植.據(jù)了解,平均每戶的年收入為6萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),當(dāng)?shù)卣疀Q 定動員部分農(nóng)民從事蔬菜加工.據(jù)統(tǒng)計,若動員戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù) 從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高
,而從事蔬菜加工的農(nóng)民平均每戶的年收入為
萬元.
(1)在動員戶農(nóng)民從事蔬菜加工后,要使剩下
戶從事蔬菜種植的所有農(nóng)民總年收 入不低于動員前100戶從事蔬菜種植的所有農(nóng)民年總年收入,求
的取值范圍;
(2)在(1)的條件下,要使這戶農(nóng)民從事蔬菜加工的總年收入始終不高于
戶從事蔬菜種植的所有農(nóng)民年總年收入,求
的最大值.(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的五個區(qū)域中,中心區(qū)域是一幅圖畫,現(xiàn)要求在其余四個區(qū)域中涂色,有四種顏色可供選擇.要求每個區(qū)域只涂一種顏色且相鄰區(qū)域所涂顏色不同,則不同的涂色方法種數(shù)為( )
A. 56 B. 72 C. 64 D. 84
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復(fù)發(fā)的情況進(jìn)行了統(tǒng)計,得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為).
(1)補(bǔ)充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有
的把握認(rèn)為甲、乙兩套治療方案對患者白血病復(fù)發(fā)有影響;
(2)從復(fù)發(fā)的患者中抽取3人進(jìn)行分析,求其中接受“乙方案”治療的人數(shù)的數(shù)學(xué)期望.
附:
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公比為正數(shù)的等比數(shù)列,首項
,前n項和為
,且
,
,
成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列
的前n項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com