日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),函數(shù)gx)=-2x+3.

          (1)當(dāng)a=2時,求fx)的極值;

          (2)討論函數(shù)的單調(diào)性;

          (3)若-2≤a≤-1,對任意x1x2∈[1,2],不等式|fx1)-fx2)|≤t|gx1)-gx2)|恒成立,求實數(shù)t的最小值.

          【答案】(1)fx)極大值=f1)=0,無極小值

          (2)當(dāng)a≤0時,Fx)在(0,+∞)單調(diào)遞增;當(dāng)a>0時,Fx)在單調(diào)遞增,在單調(diào)遞減

          (3)

          【解析】

          (1)當(dāng)a=2時,利用導(dǎo)數(shù)求得函數(shù) 的單調(diào)區(qū)間,進而得到極值.

          (2)求得,分a≤0和a0,兩種情況討論,即可得出函數(shù)的單調(diào)區(qū)間;

          (3)把不等式轉(zhuǎn)化為fx2)-fx1)≤t[gx1)-gx2)],得到fx2)+tgx2)≤fx1)+tgx1)對任意-2≤a≤-1,1≤x1x2≤2恒成立,令,得到hx)在[1,2]遞減,求得 對任意a∈[-2,-1],x∈[1,2]恒成立,進而轉(zhuǎn)化變量只需要研究,即可求得t的取值范圍.

          (1)由題意,當(dāng)a=2時,函數(shù)fx)=lnx-x2+x,

          易知fx)在(0,1)遞增,(1,+∞)遞減,

          所以函數(shù)fx)極大值為,無極小值.

          (2)由函數(shù)

          a≤0時,0,恒成立,Fx)在(0,+∞)單調(diào)遞增;

          ②當(dāng)a0,由>0得,<0得,

          所以Fx)在單調(diào)遞增,在單調(diào)遞減.

          綜上:當(dāng)a≤0時,Fx)在(0,+∞)單調(diào)遞增;

          當(dāng)a>0時,Fx)在單調(diào)遞增,在單調(diào)遞減.

          (3)由題知t≥0,

          當(dāng)-2≤a≤-1時,fx)>0,fx)在(0+∞)單調(diào)遞增,不妨設(shè)1≤x1x2≤2,

          gx)單調(diào)遞減,∴不等式等價于fx2)-fx1)≤t[gx1)-gx2)].

          fx2+tgx2fx1+tgx1)對任意-2≤a≤-1,1≤x1≤x2≤2恒成立,

          ,則hx)在[1,2]遞減.

          對任意a∈[-2,-1],x∈[1,2]恒成立.

          在[1,2]上恒成立,

          ,

          在[1,2]單調(diào)遞增,∴,所以

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知復(fù)數(shù)滿足的虛部為2,

          1)求復(fù)數(shù);

          2)設(shè)在復(fù)平面上對應(yīng)點分別為,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正方體的棱長為1,分別為的中點.則( )

          A.直線與直線垂直B.直線與平面平行

          C.平面截正方體所得的截面面積為D.和點到平面的距離相等

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          )求函數(shù)的單調(diào)區(qū)間;

          )設(shè),若對任意、,且,都有,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)fx)是定義域為R的偶函數(shù),且fx+3)=fx-1),若當(dāng)x∈[-2,0]時,fx)=2-x,記,c=f(32),則ab,c的大小關(guān)系為( 。

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知位數(shù)滿足下列條件:各個數(shù)字只能從集合中選取;若其中有數(shù)字4,則在4的前面不含2.將這樣的n位數(shù)的個數(shù)記為

          1)求;

          2)探究之間的關(guān)系,求出數(shù)列的通項公式;

          3)對于每個正整數(shù),在之間插入得到一個新數(shù)列,設(shè)是數(shù)列的前項和,試探究能否成立?寫出你探究得到的結(jié)論并給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C的左、右頂點為AB,右焦點為F.過點A且斜率為k)的直線交橢圓C于另一點P.

          1)求橢圓C的離心率;

          2)若,求的值;

          3)設(shè)直線l:,延長AP交直線l于點Q,線段BQ的中點為E,求證:點B關(guān)于直線EF的對稱點在直線PF上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)集合,.

          (1),求實數(shù)的值;

          (2),求實數(shù)的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在長方體,中,,過三點的平面D截去長方體的一個角后,得到如圖所示的幾何體.

          (1)求幾何體的體積;

          (2)求直線與面所成角.(用反三角表示)

          查看答案和解析>>

          同步練習(xí)冊答案