日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為了解學生喜歡校內(nèi)、校外開展活動的情況,某中學一課外活動小組在學校高一年級進行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學生,低于60分的稱為類學生.

          (1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認為性別與是否為類學生有關系?

          合計

          110

          50

          合計

          (2)將頻率視為概率,現(xiàn)在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學生的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.

          參考公式:,其中.

          參考臨界值:

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          【答案】(1)列聯(lián)表見解析; 在犯錯誤的概率不超過0.01的前提下認為性別與類學生有關.

          (2)分布列見解析;;.

          【解析】分析:(1)由頻率分布直方圖可得分數(shù)在之間的學生人數(shù),得出的列聯(lián)表,利用公式,求解的觀測值,即可作出判斷.

          (2)易知從該校高一學生中隨機抽取1人,則該學生為“類”的概率為,進而得到,利用二項分布求得分布列,計算其數(shù)學期望.

          詳解:(1)由頻率分布直方圖可得分數(shù)在之間的學生人數(shù)為,在之間的學生人數(shù)為,所以低于60分的學生人數(shù)為120.因此列聯(lián)表為:

          合計

          80

          30

          110

          40

          50

          90

          合計

          120

          80

          200

          的觀測值為 ,

          所以在犯錯誤的概率不超過0.01的前提下認為性別與類學生有關.

          (2)易知從該校高一學生中隨機抽取1人,則該學生為“類”的概率為.

          依題意知

          所以 ,

          所以的分布列為

          0

          1

          2

          3

          所以期望,方差.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).(12分)
          (1)假設生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學期望;
          (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
          (。┰囌f明上述監(jiān)控生產(chǎn)過程方法的合理性;
          (ⅱ)下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:

          9.95

          10.12

          9.96

          9.96

          10.01

          9.92

          9.98

          10.04

          10.26

          9.91

          10.13

          10.02

          9.22

          10.04

          10.05

          9.95

          經(jīng)計算得 = =9.97,s= = ≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
          用樣本平均數(shù) 作為μ的估計值 ,用樣本標準差s作為σ的估計值 ,利用估計值判斷是否需對當天的生產(chǎn)過程進行檢查?剔除( ﹣3 +3 )之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計μ和σ(精確到0.01).
          附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知圓N:x2+(y+ 2=36,P是圓N上的點,點Q在線段NP上,且有點D(0, )和DP上的點M,滿足 =2 =0.
          (1)當P在圓上運動時,求點Q的軌跡方程;
          (2)若斜率為 的直線l與(1)中所求Q的軌跡交于不同兩點A、B,又點C( ,2),求△ABC面積最大值時對應的直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】經(jīng)市場調(diào)查,某種商品在進價基礎上每漲價1元,其銷售量就減少10個,已知這種商品進價為40/個,若按50元一個售出時能賣出500個.

          1)請寫出售價x)元與利潤y元之間的函數(shù)關系式;

          2)試計算當售價定為多少元時,獲得的利潤最大,并求出最大利潤.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某大學高等數(shù)學老師這學期分別用兩種不同的教學方式試驗甲、乙兩個大一新班(人數(shù)均為60人,入學數(shù)學平均分數(shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣),F(xiàn)隨機抽取甲、乙兩班各20名的高等數(shù)學期末考試成績,得到莖葉圖:

          )依莖葉圖判斷哪個班的平均分高?

          )現(xiàn)班高等數(shù)學成績不得低于80分的同學中隨機抽取兩名同學,求成績?yōu)?/span>86分的同學至少有一個被抽中的概率;

          )學校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.025的前提下認為成績優(yōu)秀與教學方式有關?

          甲班

          乙班

          合計

          優(yōu)秀

          不優(yōu)秀

          合計

          下面臨界值表僅供參考:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (參考公式:其中

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=ex﹣1﹣x﹣ax2 . (Ⅰ)當a=0時,求證:f(x)≥0;
          (Ⅱ)當x≥0時,若不等式f(x)≥0恒成立,求實數(shù)a的取值范圍;
          (Ⅲ)若x>0,證明(ex﹣1)ln(x+1)>x2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)fx)=ax2+bx,(a,b為常數(shù),且a≠0)滿足條件f(2-x)=fx-1),且方程fx)=x有兩個相等的實根.

          (1)求fx)的解析式;

          (2)設gx)=kx+1,若Fx)=gx)-fx),求Fx)在[1,2]上的最小值;

          (3)是否存在實數(shù)mnmn),使fx)的定義域和值域分別為[mn][2m,2n],若存在,求出mn的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,已知橢圓C1+=1,C2+=1(a>b>0)有相同的離心率,F(xiàn)(﹣ , 0)為橢圓C2的左焦點,過點F的直線l與C1、C2依次交于A、C、D、B四點.
          (1)求橢圓C2的方程;
          (2)求證:無論直線l的傾斜角如何變化恒有|AC|=|DB|

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),.

          (1)當時,求函數(shù)的單調(diào)區(qū)間和極值;

          (2)若對于任意,都有成立,求實數(shù)的取值范圍;

          (3)若,且,證明:.

          查看答案和解析>>

          同步練習冊答案