【題目】定義上的函數(shù)
,若滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.
(1)設(shè),判斷
在
上是否有界函數(shù),若是,請說明理由,并寫出
的所有上界的值的集合,若不是,也請說明理由;
(2)若函數(shù)在
上是以3為上界的有界函數(shù),求實(shí)數(shù)
的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD為矩形,AB=2AD=4,M為AB的中點(diǎn),將△ADM沿DM折起,得到四棱錐A1﹣DMBC,設(shè)A1C的中點(diǎn)為N,在翻折過程中,得到如下有三個命題:①BN∥平面A1DM;②三棱錐N﹣DMC的最大體積為;③在翻折過程中,存在某個位置,使得DM⊥A1C.其中正確命題的序號為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知曲線的方程為
,曲線
的方程為
.以極點(diǎn)
為原點(diǎn),極軸為
軸正半軸建立直角坐標(biāo)系
.
(1)求曲線,
的直角坐標(biāo)方程;
(2)若曲線與
軸相交于點(diǎn)
,與曲線
相交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,焦距為
,拋物線
的焦點(diǎn)F是橢圓
的頂點(diǎn).
(1)求與
的標(biāo)準(zhǔn)方程;
(2)上不同于F的兩點(diǎn)P,Q滿足以PQ為直徑的圓經(jīng)過F,且直線PQ與
相切,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,底面△
是等腰直角三角形,
,
為側(cè)棱
的中點(diǎn).
(1)求證:平面
;
(2)求異面直線與
所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時,定義P的“伴隨點(diǎn)”為;
當(dāng)P是原點(diǎn)時,定義P的“伴隨點(diǎn)“為它自身,平面曲線C上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn),則點(diǎn)
的“伴隨點(diǎn)”是點(diǎn)A
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對稱,則其“伴隨曲線”關(guān)于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是_____________(寫出所有真命題的序列).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,
為其前n項(xiàng)的和,滿足
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為
,數(shù)列
的前n項(xiàng)和為
,求證:當(dāng)
時
;
(3)若函數(shù)的定義域?yàn)?/span>R,并且
,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)調(diào)查了某班全部名同學(xué)參加學(xué)校社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社 | 未參加書法社 | |
參加辯論社 | ||
未參加辯論社 |
(1)從該班隨機(jī)選名同學(xué),求該同學(xué)至少參加一個社團(tuán)的概率;
(2)在既參加書法社又參加辯論社的名同學(xué)中,有
名男同學(xué)
,
名女同學(xué)
.現(xiàn)從這
名同學(xué)中男女姓各隨機(jī)選
人(每人被選到的可能性相同).
(i)列舉出所有可能結(jié)果;
(ii)設(shè)為事件“
被選中且
未被選中”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A,B,C三個班共有100名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲得了部分學(xué)生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時):
A班 | 6 6.5 7 7.5 8 |
B班 | 6 7 8 9 10 11 12 |
C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
(Ⅰ)試估計(jì)C班的學(xué)生人數(shù);
(Ⅱ)從A班和C班抽出的學(xué)生中,各隨機(jī)選取一人,A班選出的人記為甲,C班選出的人記為乙.假設(shè)所有學(xué)生的鍛煉時間相互獨(dú)立,求該周甲的鍛煉時間比乙的鍛煉時間長的概率;
(Ⅲ)再從A,B,C三個班中各隨機(jī)抽取一名學(xué)生,他們該周的鍛煉時間分別是7,9,8.25(單位:小時).這3個新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中數(shù)據(jù)的平均數(shù)記為
,試判斷
和
的大小.(結(jié)論不要求證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com