日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】甲乙兩種商品在過去一段時間內(nèi)的價格走勢如圖所示,假設(shè)某人持有資金120萬元,他可以在t1至t4的任意時刻買賣這兩種商品,且買賣能夠立即成交(其他費(fèi)用忽略不計),那么他持有的資金最多可變?yōu)椋?/span>
          A.120萬元
          B.160萬元
          C.220萬元
          D.240萬元

          【答案】A
          【解析】解:甲在6元時,全部買入,可以買120÷6=20(萬)份,在t2時刻,全部賣出,此時獲利20×2=40萬,

          乙在4元時,買入,可以買(120+40)÷4=40(萬)份,在t4時刻,全部賣出,此時獲利40×2=80萬,

          共獲利40+80=120萬,

          故選:A

          【考點(diǎn)精析】本題主要考查了函數(shù)的圖象的相關(guān)知識點(diǎn),需要掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C經(jīng)過三個點(diǎn)A(4,1),B(6,﹣3),C(﹣3,0),則圓C的方程為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)y= 的定義域為A,值域為B,則A∩B=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x﹣3)2+(y﹣4)2=1.
          (Ⅰ)若過點(diǎn)C1(﹣1,0)的直線l被圓C2截得的弦長為 ,求直線l的方程;
          (Ⅱ)圓D是以1為半徑,圓心在圓C3:(x+1)2+y2=9上移動的動圓,若圓D上任意一點(diǎn)P分別作圓C1的兩條切線PE,PF,切點(diǎn)為E,F(xiàn),求 的取值范圍;
          (Ⅲ)若動圓C同時平分圓C1的周長、圓C2的周長,則動圓C是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種平面分形如圖所示,一級分形圖是由一點(diǎn)出發(fā)的三條線段,長度均為1,兩兩 夾角為120°; 二級分形圖是在一級分形圖的每條線段的末端出發(fā)再生成兩條長度為原來 的線段,且這兩條線段與原線段兩兩夾角為120°;…;依此規(guī)律得到n級分形圖,則n級分形圖中所有線段的長度之和為.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC= AB,又PO⊥平面ABC,DA∥PO,DA=AO= PO.
          (Ⅰ)求證:PD⊥平面COD;
          (Ⅱ)求二面角B﹣DC﹣O的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】求滿足下列條件的直線方程:
          (1)求經(jīng)過直線l1:x+3y﹣3=0和l2:x﹣y+1=0的交點(diǎn),且平行于直線2x+y﹣3=0的直線l的方程;
          (2)已知直線l1:2x+y﹣6=0和點(diǎn)A(1,﹣1),過點(diǎn)A作直線l與l1相交于點(diǎn)B,且|AB|=5,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,N為CD1中點(diǎn),M為線段BC1上的動點(diǎn),(M不與B,C1重合)有四個命題:
          ①CD1⊥平面BMN;
          ②MN∥平面AB1D1;
          ③平面AA1CC1⊥平面BMN;
          ④三棱錐D﹣MNC的體積有最大值.
          其中真命題的序號是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=2x
          (1)解方程f(log4x)=3;
          (2)已知不等式f(x+1)≤f[(2x+a)2](a>0)對x∈[0,15]恒成立,求實數(shù)a的取值范圍;
          (3)存在x∈(﹣∞,0],使|af(x)﹣f(2x)|>1成立,試求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案