日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)在點處的切線方程為,且對任意的恒成立.
          (Ⅰ)求函數(shù)的解析式;
          (Ⅱ)求實數(shù)的最小值;
          (Ⅲ)求證:).

          (Ⅰ) (Ⅱ) 
          (Ⅲ)先證,累加即得.

          解析試題分析:(Ⅰ)將代入直線方程得,∴① 
          ,∴②  
          聯(lián)立,解得                                
          (Ⅱ),∴上恒成立;
          恒成立;         
          設(shè),,
          ∴只需證對于任意的                 

          設(shè),
          1)當(dāng),即時,,∴
          單調(diào)遞增,∴                 
          2)當(dāng),即時,設(shè)是方程的兩根且
          ,可知,分析題意可知當(dāng)時對任意;
          ,∴                              
          綜上分析,實數(shù)的最小值為.                             
          (Ⅲ)令,有恒成立;
          ,得        

          ∴原不等式得證.  
          考點:利用導(dǎo)數(shù)研究曲線上某點切線方程;函數(shù)解析式的求解及常用方法;不等式的證明.
          點評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的切線方程問題,在曲線上某點處的切線的斜率就是該點的導(dǎo)數(shù)值,考查了導(dǎo)數(shù)在最大值和最小值中的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想和分類討論的數(shù)學(xué)思想.特別是(Ⅲ)的證明,用到了放縮法和裂項相消,此題屬難度較大的題目.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          函數(shù)
          (1)時,求函數(shù)的單調(diào)區(qū)間;
          (2)時,求函數(shù)上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)若,求曲線在點處的切線方程;
          (Ⅱ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅲ)設(shè)函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          函數(shù)f(x)=x2+x-.
          (I)若定義域為[0,3],求f(x)的值域;
          (II)若f(x)的值域為[-,],且定義域為[a,b],求b-a的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時,f(x)=x.
          (1)求f(π)的值; 
          (2)當(dāng)-4≤x≤4時,求f(x)的圖象與x軸所圍成圖形的面積;
          (3)寫出(-∞,+∞)內(nèi)函數(shù)f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          求函數(shù)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知
          (1)求當(dāng)時,函數(shù)的表達式;
          (2)作出函數(shù)的圖象,并指出其單調(diào)區(qū)間。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (I)當(dāng)a=3時,求曲線y=f(x)在點(1,f(1))處的切線方程;
          (II)對任意b>0,f(x)在區(qū)間[b-lnb,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),
          (1)討論單調(diào)區(qū)間;
          (2)當(dāng)時,證明:當(dāng)時,證明:。

          查看答案和解析>>

          同步練習(xí)冊答案