如圖,四邊形ABCD中,為正三角形,
,
,AC與BD交于O點(diǎn).將
沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為
,且P點(diǎn)在平面ABCD內(nèi)的射影落在
內(nèi).
(Ⅰ)求證:平面PBD;
(Ⅱ)若已知二面角的余弦值為
,求
的大小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖,已知三棱柱的側(cè)棱與底面垂直,
,
,
,
分別是
,
的中點(diǎn),點(diǎn)
在直線
上,且
;
(1)證明:無(wú)論取何值,總有
;
(2)當(dāng)取何值時(shí),直線
與平面
所成的角
最大?并求該角取最大值時(shí)的正切值;
(3)是否存在點(diǎn),使得平面
與平面
所成的二面角為30º,若存在,試確定點(diǎn)
的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)如圖,四棱錐的底面
為矩形,且
,
,
,
(Ⅰ)平面與平面
是否垂直?并說(shuō)明理由;
(Ⅱ)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
如圖,在三棱錐中,
為
的中點(diǎn),
平面
,垂足
落在線段
上,已知
(1)證明:;
(2)在線段上是否存在點(diǎn)
,使得二面角
為直二面角?若存在,求出
的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知平面
,
平面
,△
為等邊三角形,邊長(zhǎng)為2a,
,
為
的中點(diǎn).
(1)求證:平面
;
(2)求證:平面平面
;
(3)求直線和平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題共l5分) 如圖,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA1.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題満分12分)
如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點(diǎn).
(Ⅰ)證明AD⊥D1F;
(Ⅱ)求AE與D1F所成的角;
(Ⅲ)證明面AED⊥面A1FD1;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,圓柱的高為2,底面半徑為3,AE、DF是圓柱的兩條母線,B、C是下底面圓周上的兩點(diǎn),已知四邊形ABCD是正方形.
(1)求證:;
(2)求正方形ABCD的邊長(zhǎng);
(3)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖所示,已知空間四邊形OABC中,|OB|=|OC|,且∠AOB=∠AOC,則、
夾角θ的余弦值為( )
A.0 | B.![]() | C.![]() | D.![]() |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com