日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,曲線是以原點(diǎn)O為中心、為焦點(diǎn)的橢圓的一部分,曲線是以O(shè)為頂點(diǎn)、為焦點(diǎn)的拋物線的一部分,A是曲線的交點(diǎn)
          為鈍角.

          (1)求曲線的方程;
          (2)過(guò)作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問(wèn)是否為定值?若是求出定值;若不是說(shuō)明理由.
          (1),(2)3
          本題考查橢圓、拋物線的標(biāo)準(zhǔn)方程,考查直線與橢圓、拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生的計(jì)算能力,聯(lián)立方程,正確運(yùn)用韋達(dá)定理是關(guān)鍵
          (Ⅰ)設(shè)曲線C2所在的拋物線的方程為y2=2px,將A( )
          )代入可得p的值,利用橢圓的定義,可得曲線C1所在的橢圓的方程;
          (Ⅱ)設(shè)B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),過(guò)F2與x軸不垂直的直線為x=ty+1,與橢圓方程聯(lián)立,利用韋達(dá)定理可得|y1-y2|,同理可知|y3-y4| 。
          解:(本小題滿分12分)(Ⅰ)

          橢圓方程為,拋物線方程為。    ……………5分


          同理,將代入得:
          ,    …………8分
          …………12分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.
           
          (Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
          (Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸
          長(zhǎng)的2倍,且經(jīng)過(guò)點(diǎn)M. 平行于OM的直線軸上的截距為并交橢
          圓C于A、B兩個(gè)不同點(diǎn).
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)求m的取值范圍; 
          (3)求證:直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知雙曲線的左右焦點(diǎn)分別為,P為C的右支上一點(diǎn),且=,△的面積等于(   )
          A.24B.36C.48D.96

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的中心在原點(diǎn),焦點(diǎn)為F1,F(xiàn)2(0,),且離心率。
          (I)求橢圓的方程;
          (II)直線l(與坐標(biāo)軸不平行)與橢圓交于不同的兩點(diǎn)A、B,且線段AB中點(diǎn)的橫坐標(biāo)
          ,求直線l的斜率的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          某公園內(nèi)有一橢圓形景觀水池,經(jīng)測(cè)量知,橢圓長(zhǎng)軸長(zhǎng)為20米,短軸長(zhǎng)為16米,現(xiàn)以橢圓長(zhǎng)軸所在直線為軸,短軸所在直線為軸,建立平面直角坐標(biāo)系,如圖所示:

          (1)為增加景觀效果,擬在水池內(nèi)選定兩點(diǎn)安裝水霧噴射口,要求橢圓上各點(diǎn)到這兩點(diǎn)距離之和都相等,請(qǐng)指出水霧噴射口的位置(用坐標(biāo)表示),并求橢圓的方程。
          (2)為了增加水池的觀賞性,擬劃出一個(gè)以橢圓的長(zhǎng)軸頂點(diǎn)A、短軸頂點(diǎn)B及橢圓上某點(diǎn)M構(gòu)成的三角形區(qū)域進(jìn)行夜景燈光布置,請(qǐng)確定點(diǎn)M的位置,使此三角形區(qū)域面積最大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓方程為,它的一個(gè)頂點(diǎn)為,離心率
          (1)求橢圓的方程;
          (2)設(shè)直線l與橢圓交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面
          積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本題滿分14分)以下是有關(guān)橢圓的兩個(gè)問(wèn)題:
          問(wèn)題1:已知橢圓,定點(diǎn)A(1, 1),F(xiàn)是右焦點(diǎn),P是橢圓上動(dòng)點(diǎn),則有最小值;
          問(wèn)題2:已知橢圓,定點(diǎn)A (2, 1),F(xiàn)是右焦點(diǎn),
          P是橢圓上動(dòng)點(diǎn),有最小值;

          (Ⅰ)求問(wèn)題1中的最小值,并求此時(shí)P點(diǎn)坐標(biāo);
          (Ⅱ)試類比問(wèn)題1,猜想問(wèn)題2中的值,并談?wù)勀阕鞔瞬孪氲囊罁?jù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          設(shè)橢圓以正方形的兩個(gè)頂點(diǎn)為焦點(diǎn)且過(guò)另外兩個(gè)頂點(diǎn),那么此橢圓的離心率為(    )
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案