已知函數(shù)的圖象在
上連續(xù),定義:
,
.其中,
表示函數(shù)
在
上的最小值,
表示函數(shù)
在
上的最大值.若存在最小正整數(shù)
,使得
對(duì)任意的
成立,則稱函數(shù)
為
上的“
階收縮函數(shù)”.
(Ⅰ)若,試寫(xiě)出
,
的表達(dá)式;
(Ⅱ)已知函數(shù),試判斷
是否為
上的“
階收縮函數(shù)”.如果是,求出對(duì)應(yīng)的
;如果不是,請(qǐng)說(shuō)明理由;
(Ⅲ)已知,函數(shù)
是
上的2階收縮函數(shù),求
的取值范圍.
(Ⅰ),
;(Ⅱ)存在k=4,使得f(x)是[﹣1,4]上的4階收縮函數(shù).(Ⅲ)
解析試題分析:(Ⅰ)根據(jù)f(x)=cosx的最大值為1,可得f1(x)、f2(x)的解析式.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
(Ⅱ)根據(jù)函數(shù)f(x)=x2在x∈[-1,4]上的值域,先寫(xiě)出f1(x)、f2(x)的解析式,再由f2(x)-f1(x)≤k(x-a)求出k的范圍得到答案.
(3)先對(duì)函數(shù)f(x)進(jìn)行求導(dǎo)判斷函數(shù)的單調(diào)性,進(jìn)而寫(xiě)出f1(x)、f2(x)的解析式,
然后再由f2(x)-f1(x)≤k(x-a)求出k的范圍得到答案.
試題解析:
(Ⅰ)由題意可得:,
2分
(Ⅱ),
,
所以 4分
當(dāng)時(shí),
,∴
,即
;
當(dāng)時(shí),
,∴
,即
;
當(dāng)時(shí),
,∴
,即
.
綜上所述,∴
即存在k=4,使得f(x)是[﹣1,4]上的4階收縮函數(shù). 7分
(Ⅲ)令
得
或
.函數(shù)f(x)的變化情況如下:
x (- ,0)
0 (0,2) 2 (2,+ )
- 0 + 0 - f(x) 0 4 學(xué)海導(dǎo)航系列答案
小學(xué)語(yǔ)文閱讀課堂系列答案
配套檢測(cè)與練習(xí)系列答案
天天練習(xí)王口算題卡心算速算巧算系列答案
通城學(xué)典初中課外文言文閱讀系列答案
名師學(xué)案英語(yǔ)閱讀系列答案
口算題卡加應(yīng)用題一日一練系列答案
53題霸專題集訓(xùn)系列答案
中考現(xiàn)代文閱讀系列答案
語(yǔ)文全真模擬試卷系列答案
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(其中
,e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若,試判斷函數(shù)
在區(qū)間
上的單調(diào)性;
(Ⅱ)若,當(dāng)
時(shí),試比較
與2的大小;
(Ⅲ)若函數(shù)有兩個(gè)極值點(diǎn)
,
(
),求k的取值范圍,并證明
.
.
(1)若在
處取得極值,求實(shí)數(shù)
的值;
(2)求函數(shù)在區(qū)間
上的最大值.
(其中
為常數(shù)).
(I)當(dāng)時(shí),求函數(shù)
的最值;
(Ⅱ)討論函數(shù)的單調(diào)性.
.
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)求證:;
(Ⅲ)對(duì)于函數(shù)與
定義域上的任意實(shí)數(shù)
,若存在常數(shù)
,使得
和
都成立,則稱直線
為函數(shù)
與
的“分界線”.設(shè)函數(shù)
,
,
與
是否存在“分界線”?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
,
.
(1)若,求證:當(dāng)
時(shí),
;
(2)若在區(qū)間
上單調(diào)遞增,試求
的取值范圍;
(3)求證:.
的反函數(shù)為
,設(shè)
的圖象上在點(diǎn)
處的切線在y軸上的截距為
,數(shù)列{
}滿足:
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)在數(shù)列中,僅
最小,求
的取值范圍;
(Ⅲ)令函數(shù)數(shù)列
滿足
,求證:對(duì)一切n≥2的正整數(shù)都有
,點(diǎn)
為一定點(diǎn),直線
分別與函數(shù)
的圖象和
軸交于點(diǎn)
,
,記
的面積為
.
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)時(shí), 若
,使得
, 求實(shí)數(shù)
的取值范圍.
,且
.
(1)判斷的奇偶性并說(shuō)明理由;
(2)判斷在區(qū)間
上的單調(diào)性,并證明你的結(jié)論;
(3)若在區(qū)間上,不等式
恒成立,試確定實(shí)數(shù)
的取值范圍.
版權(quán)聲明:本站所有文章,圖片來(lái)源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無(wú)意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來(lái)函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)