日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)f(x)= (常數(shù)a∈Z)為偶函數(shù)且在(0,+∞)是減函數(shù),則f(2)=

          【答案】
          【解析】解:∵函數(shù)f(x)= (常數(shù)a∈Z)在(0,+∞)是減函數(shù),∴a2﹣2a﹣3<0,解得﹣1<a<3,
          ∵a∈Z,∴a=0,1,2,
          若a=0,則f(x)=x3 , 為奇函數(shù),不滿足條件.
          若a=1,則f(x)=x4 , 為偶函數(shù),滿足條件.
          若a=2,則f(x)=x3 , 為奇函數(shù),不滿足條件.
          故a=1,f(x)=x4= ,
          則f(2)=
          所以答案是:
          【考點(diǎn)精析】關(guān)于本題考查的奇偶性與單調(diào)性的綜合,需要了解奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若平面區(qū)域 夾在兩條斜率為 的平行直線之間,則這兩平行直線間的距離的最小值為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(x﹣m﹣9)<0}
          (1)求A∩B;
          (2)若AC,求實(shí)數(shù) m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐的底面是正方形, 底面, ,點(diǎn)分別在棱上,且平面.

          (1)求證:

          (2)求直線與平面所成角的正弦值.

          (3)求二面角的余弦值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某高校學(xué)生社團(tuán)為了解“大數(shù)據(jù)時(shí)代”下大學(xué)生就業(yè)情況的滿意度,對(duì)20名學(xué)生進(jìn)行問(wèn)卷計(jì)分調(diào)查(滿分100分),得到如圖所示的莖葉圖:

          (1)計(jì)算男生打分的平均分,觀察莖葉圖,評(píng)價(jià)男女生打分的分散程度;

          (2)從打分在80分以上的同學(xué)隨機(jī)抽3人,求被抽到的女生人數(shù)的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中, , , ,平面平面, 為等腰直角三角形,

          (1)證明: 為直角三角形;

          (2)若四棱錐的體積為,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓O的方程為x2+y2=1,直線l1過(guò)點(diǎn)A(3,0),且與圓O相切.
          (1)求直線l1的方程;
          (2)設(shè)圓O與x軸相交于P,Q兩點(diǎn),M是圓O上異于P,Q的任意一點(diǎn),過(guò)點(diǎn)A且與x軸垂直的直線為l2 , 直線PM交直線l2于點(diǎn)P′,直線QM交直線l2于點(diǎn)Q′.求證:以P′Q′為直徑的圓C總經(jīng)過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC的中點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖所示.

          (Ⅰ)求三棱錐P﹣ABD的體積.
          (Ⅱ)在∠ACB的平分線所在直線上確定一點(diǎn)Q,使得PQ∥平面ABD,并求此時(shí)PQ的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓,圓的圓心在橢圓上,點(diǎn)到橢圓的右焦點(diǎn)的距離為.

          (1)求橢圓的方程;

          (2)過(guò)點(diǎn)作互相垂直的兩條直線,且橢圓兩點(diǎn), 直線交圓兩點(diǎn), 的中點(diǎn), 的面積的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案