日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點(diǎn)是拋物線上一點(diǎn),點(diǎn)為拋物線的焦點(diǎn),.

          1)求直線的方程;

          2)若直線與拋物線的另一個(gè)交點(diǎn)為,曲線在點(diǎn)與點(diǎn)處的切線分別為,直線相交于點(diǎn),求的面積.

          【答案】12

          【解析】

          1)根據(jù)拋物線的定義,即可求得拋物線方程,以及點(diǎn)的坐標(biāo),利用點(diǎn)斜式即可求得直線方程;

          2)聯(lián)立直線的方程與拋物線方程,即可求得點(diǎn)坐標(biāo),求得切線方程,聯(lián)立可得點(diǎn)坐標(biāo),利用點(diǎn)到直線距離公式和兩點(diǎn)之間的距離公式,即可容易求得結(jié)果.

          1)因?yàn)?/span>,所以,解得,所以,

          又因?yàn)?/span>,且,所以,所以,

          故直線的方程為,化簡(jiǎn)得.

          2)由(1)知,拋物線的方程為,

          聯(lián)立方程,得,

          解得,即,

          所以.

          設(shè)直線的方程為,聯(lián)立,

          ,由,解得

          所以直線的方程為,同理可得直線的方程為,

          解得,即,

          設(shè)點(diǎn)到直線的距離為,

          ,

          所以的面積為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          1)求曲線的普通方程和的直角坐標(biāo)方程;

          2)已知曲線的極坐標(biāo)方程為,點(diǎn)是曲線的交點(diǎn),點(diǎn)是曲線的交點(diǎn),均異于原點(diǎn),且,求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形為正方形,四邊形為矩形,且平面與平面互相垂直.若多面體 的體積為,則該多面體外接球表面積的最小值為( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】水資源與永恒發(fā)展2015年聯(lián)合國(guó)世界水資源日主題,近年來(lái),某企業(yè)每年需要向自來(lái)水廠所繳納水費(fèi)約4萬(wàn)元,為了緩解供水壓力,決定安裝一個(gè)可使用4年的自動(dòng)污水凈化設(shè)備,安裝這種凈水設(shè)備的成本費(fèi)(單位:萬(wàn)元)與管線、主體裝置的占地面積(單位:平方米)成正比,比例系數(shù)約為0.2.為了保證正常用水,安裝后采用凈水裝置凈水和自來(lái)水廠供水互補(bǔ)的用水模式.假設(shè)在此模式下,安裝后該企業(yè)每年向自來(lái)水廠繳納的水費(fèi)C(單位:萬(wàn)元)與安裝的這種凈水設(shè)備的占地面積x(單位:平方米)之間的函數(shù)關(guān)系是C(x)= (x≥0,k為常數(shù)).記y為該企業(yè)安裝這種凈水設(shè)備的費(fèi)用與該企業(yè)4年共將消耗的水費(fèi)之和.

          (1)試解釋C(0)的實(shí)際意義,并建立y關(guān)于x的函數(shù)關(guān)系式并化簡(jiǎn);

          (2)當(dāng)x為多少平方米時(shí),y取得最小值,最小值是多少萬(wàn)元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),直線的普通方程為,設(shè)的交點(diǎn)為,當(dāng)變化時(shí),記點(diǎn)的軌跡為曲線. 在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的方程為.

          1)求曲線的普通方程;

          2)設(shè)點(diǎn)上,點(diǎn)上,若直線的夾角為,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切.為左頂點(diǎn),過(guò)點(diǎn)的直線交橢圓,兩點(diǎn),直線分別交直線,兩點(diǎn).

          1)求橢圓的方程;

          2)以線段為直徑的圓是否過(guò)定點(diǎn)?若是,寫(xiě)出所有定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線,,圓.

          1)當(dāng)為何值時(shí),直線平行;

          2)當(dāng)直線與圓相交于,兩點(diǎn),且時(shí),求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).

          1)若,證明在區(qū)間上沒(méi)有零點(diǎn);

          2)在恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,若對(duì)任意的 aR,存在 [0,2] ,使得成立,則實(shí)數(shù)k的最大值是_____

          查看答案和解析>>

          同步練習(xí)冊(cè)答案