日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四面體中,已知⊥平面, , 的中點(diǎn)

          (1)求證:

          (2)若的中點(diǎn),點(diǎn)在直線上,且

          求證:直線//平面

          【答案】(1)見解析(2)見解析.

          【解析】試題分析:(1)由等腰三角形性質(zhì)得ADPC.再根據(jù)PA⊥平面ABC,PABC.最后根據(jù)線面垂直判定定理得BC⊥平面PAC,得BC AD.即得AD⊥平面PBC,可得ADBD(2)設(shè)BDCM交于點(diǎn)G,先根據(jù)平幾知識(shí)得AD//NG,再根據(jù)線面平行判定定理得結(jié)論

          試題解析:(1) PA=AC,DPC的中點(diǎn),∴ADPC.

          PA⊥平面ABC,BC平面ABC, PABC.

          ∵ ∠ACB=90°,BC AC,且PAAC =A, 平面

          BC⊥平面PAC.

          AD平面PAC, BC AD.

          平面,

          AD⊥平面PBC .

          BD平面PBC,ADBD .

          (2) 連接DM,設(shè)BDCM交于點(diǎn)G,連接N G,

          D、M為中點(diǎn),DM //BC且

          ∴ DG:GB=DM:BC=1:2.

          ∵ AN:NB=1:2,∴AN:NB= DG:GB .

          ∴ △BNG∽△BAD,AD//NG,

          平面CMN, 平面CMN,

          ∴ 直線AD//平面CMN.

          點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.

          (1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.

          (2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.

          (3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)幾何體,它的下面是一個(gè)圓柱,上面是一個(gè)圓錐,并且圓錐的底面與圓柱的上底面重合,圓柱的底面直徑為3 cm,高為4 cm,圓錐的高為3 cm,畫出此幾何體的直觀圖.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱臺(tái)ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BEEFFC=1,BC=2,AC=3.

          (1)求證:BF⊥平面ACFD;

          (2)求二面角B-AD-F的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C經(jīng)過P4,-2),Q-1,3)兩點(diǎn),且圓心在x軸上。

          1)求直線PQ的方程;

          2)圓C的方程;

          3)若直線l∥PQ,且l與圓C交于點(diǎn)A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知的三個(gè)內(nèi)角,且其對(duì)邊分別為,若

          (1)求角的值;

          (2)若,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中, 為正三角形,平面平面 , , .

          (Ⅰ)求證:平面平面

          (Ⅱ)求三棱錐的體積;

          (Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置并證明;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司近年來科研費(fèi)用支出萬元與公司所獲利潤(rùn)萬元之間有如表的統(tǒng)計(jì)

          數(shù)據(jù):參考公式:用最小二乘法求出關(guān)于的線性回歸方程為: ,

          其中: , ,參考數(shù)值: 。

          (Ⅰ)求出;

          (Ⅱ)根據(jù)上表提供的數(shù)據(jù)可知公司所獲利潤(rùn)萬元與科研費(fèi)用支出萬元線性相關(guān),請(qǐng)用最小二乘法求出關(guān)于的線性回歸方程;

          (Ⅲ)試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測(cè)該公司科研費(fèi)用支出為10萬元時(shí)公司所獲得的利潤(rùn)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面 , , 分別為, 的中點(diǎn),點(diǎn)在線段上.

          (1)求證: 平面;

          (2)如果三棱錐的體積為,求點(diǎn)到面的距離.

          【答案】(1)證明見解析;(2)

          【解析】試題分析:

          (1)在平行四邊形中,得出,進(jìn)而得到,證得底面,得出,進(jìn)而證得平面

          (2)由到面的距離為,所以 中點(diǎn),即可求解的值.

          試題解析:

          證明:(1)在平行四邊形中,因?yàn)?/span> ,

          所以,由, 分別為 的中點(diǎn),得,所以

          側(cè)面底面,且, 底面

          又因?yàn)?/span>底面,所以

          又因?yàn)?/span> 平面, 平面

          所以平面

          解:(2)到面的距離為1,所以 中點(diǎn),

          型】解答
          結(jié)束】
          21

          【題目】已知函數(shù)

          (1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

          (2)求函數(shù)的極值;

          (3)若函數(shù)在區(qū)間上是增函數(shù),試確定的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,點(diǎn)邊上,,,

          (1)求的值;

          (2)若的面積是,求的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案