日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知2sin2α-3sinαcosα-5cos2α=0,求tanα的值.
          分析:利用sin2α+cos2α=1,可將2sin2α-3sinαcosα-5cos2α=0轉(zhuǎn)化為
          2sin2α-3sinαcosα-5cos2α
          sin2α+cos2α
          =0,對上式分子、分母同除以cos2α,從而可求得tanα的值.
          解答:解:∵2sin2α-3sinαcosα-5cos2α=0
          2sin2α-3sinαcosα-5cos2α
          sin2α+cos2α
          =0
          -----------------------(4分)
          對上式分子、分母同除以cos2α且cos2α≠0,得
          2tan2α-3tanα-5
          tan2α+1
          =0
          ------------------------(8分)
          ∴2tan2α-3tanα-5=0------------------------(10分)
          ∴tana=-1 或tana=
          5
          2
          -----------------------(12分)
          點評:本題考查同角三角函數(shù)間的基本關(guān)系,關(guān)鍵在于將條件等式的左端分母中的1用sin2α+cos2α替換,再將分子分母同除以cos2α,轉(zhuǎn)化為關(guān)于tanα的式子,考查轉(zhuǎn)化思想與運算能力,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知tanα=3求
          (1)
          4sinα-2cosα5cosα+3sinα
          ;  
          (2)2sin2α+sinαcosβ-3cos2α.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知tanα=3,求下列各式的值.
          (1)
          sin2α-2sinαcosα-cos2α4cos2α-3sin2α

          (2)2sin2α-sinαcosα+1.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知sinα-cosα=
          2
          ,求sin3α-cos3α的值.
          (2)已知tanα=-3,求2sin2α-cos2α的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知tanθ=3,則2sin2θ+2sinθcosθ-cos2θ=
          23
          10
          23
          10

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知2sin2α-sinαcosα+5cos2α=3,則tanα的值是(  )

          查看答案和解析>>

          同步練習冊答案