日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)
          (1)若,判斷函數(shù)的奇偶性,并加以證明;
          (2)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;
          (3)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
          (1)奇函數(shù),(2),(3)

          試題分析:(1)函數(shù)奇偶性的判定,一要判定定義域是否關(guān)于原點對稱,二要判定是否相等或相反,(2)函數(shù) 是分段函數(shù),每一段都是二次函數(shù)的一部分,因此研究 單調(diào)性,必須研究它們的對稱軸,從圖像可觀察得到實數(shù) 滿足的條件: ,(3)研究方程根的個數(shù),通常從圖像上研究,結(jié)合(2)可研究出函數(shù)圖像.分三種情況研究,一是上單調(diào)增函數(shù),二是先在上單調(diào)增,后在上單調(diào)減,再在上單調(diào)增,三是先在上單調(diào)增,后在上單調(diào)減,再在上單調(diào)增.
          試題解析:(1)函數(shù)為奇函數(shù).
          時,,,∴
          ∴函數(shù)為奇函數(shù);                    3分
          (2),當時,的對稱軸為:;
          時,的對稱軸為:;∴當時,在R上是增函數(shù),即時,函數(shù)上是增函數(shù);                   7分
          (3)方程的解即為方程的解.
          ①當時,函數(shù)上是增函數(shù),∴關(guān)于的方程不可能有三個不相等的實數(shù)根;                               9分
          ②當時,即,∴上單調(diào)增,在上單調(diào)減,在上單調(diào)增,∴當時,關(guān)于的方程有三個不相等的實數(shù)根;即,∵
          設(shè),∵存在使得關(guān)于的方程有三個不相等的實數(shù)根, ∴,又可證上單調(diào)增
          ;      12分
          ③當時,即,∴上單調(diào)增,在上單調(diào)減,在上單調(diào)增,
          ∴當時,關(guān)于的方程有三個不相等的實數(shù)根;
          ,∵,設(shè)
          ∵存在使得關(guān)于的方程有三個不相等的實數(shù)根,
          ,又可證上單調(diào)減∴
          ;                    15分
          綜上:.            16分
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知函數(shù)f(x)對于任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-.
          (1)求證:f(x)在R上是減函數(shù).
          (2)求f(x)在[-3,3]上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知函數(shù).
          (1)求函數(shù)的定義域;
          (2)判斷的奇偶性并予以證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,F(xiàn)(x)=
          (1)若f(-1)=0,且函數(shù)f(x) ≥0的對任意x屬于一切實數(shù)成立,求F(x)的表達式;
          (2)在 (1)的條件下,當x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          同時滿足兩個條件:①定義域內(nèi)是減函數(shù);②定義域內(nèi)是奇函數(shù)的函數(shù)是(  ).
          A.f(x)=-x|x| B.f(x)=x3
          C.f(x)=sin xD.f(x)=

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          定義在R上的函數(shù),滿足,則的取值范圍是    .

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          函數(shù)的定義域為,且對其內(nèi)任意實數(shù)均有:,則上是              

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          給出下列四個命題:
          ①函數(shù)上單調(diào)遞增;
          ②若函數(shù)上單調(diào)遞減,則;
          ③若,則;
          ④若是定義在上的奇函數(shù),則.
          其中正確的序號是                  .

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          在定義域內(nèi)既是奇函數(shù)又為增函數(shù)的是(  )
          A.B.C.D.

          查看答案和解析>>

          同步練習冊答案