日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          過(guò)點(diǎn)(0,4),離心率為
          3
          5

          (1)求C的方程;
          (2)求過(guò)點(diǎn)(3,0)且斜率為
          4
          5
          的直線被C所截線段的長(zhǎng)度.
          (1)將(0,4)代入C的方程得
          16
          b2
          =1
          ,
          ∴b=4,
          e=
          c
          a
          =
          3
          5
          ,
          a2-b2
          a2
          =
          9
          25

          1-
          16
          a2
          =
          9
          25
          ,
          ∴a=5
          ∴C的方程為
          x2
          25
          +
          y2
          16
          =1

          (2)過(guò)點(diǎn)(3,0)且斜率為
          4
          5
          的直線方程為y=
          4
          5
          (x-3)
          ,
          設(shè)直線與C的交點(diǎn)為A(x1,y1),B(x2,y2),
          將直線方程y=
          4
          5
          (x-3)
          代入C的方程,得
          x2
          25
          +
          (x-3)2
          25
          =1

          即x2-3x-8=0,
          ∴x1+x2=-3,x1x2=-8.
          |AB|=
          1+k2
          |x2-x1|=
          1+k2
          (x1+x2)2-4x1x2
          =
          41
          5
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知焦點(diǎn)在x軸上的橢圓
          x2
          20
          +
          y2
          b2
          =1(b>0)
          經(jīng)過(guò)點(diǎn)M(4,1),直線l:y=x+m交橢圓于A,B兩不同的點(diǎn).
          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)求實(shí)數(shù)m的取值范圍;
          (3)是否存在實(shí)數(shù)m,使△ABM為直角三角形,若存在,求出m的值,若不存,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          點(diǎn)P(4,4),圓C:(x-1)2+y2=5與橢圓E:
          x2
          18
          +
          y2
          2
          =1
          有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓左、右焦點(diǎn),直線PF1與圓C相切.設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
          AP
          AQ
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)與直線x+y-1=0相交于A、B兩點(diǎn).
          (1)若橢圓的半焦距c=
          3
          ,直線x=±a與y=±b圍成的矩形ABCD的面積為8,求橢圓的方程;
          (2)若O(
          OA
          OB
          =0
          為坐標(biāo)原點(diǎn)),求證:
          1
          a2
          +
          1
          b2
          =2

          (3)在(2)的條件下,若橢圓的離心率e滿足
          3
          3
          ≤e≤
          2
          2
          ,求橢圓長(zhǎng)軸長(zhǎng)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知直線l:y=2x與拋物線C:y=
          1
          4
          x2
          交于A(xA,yA)、O(0,0)兩點(diǎn),過(guò)點(diǎn)O與直線l垂直的直線交拋物線C于點(diǎn)B(xB,yB).如圖所示.
          (1)求拋物線C的焦點(diǎn)坐標(biāo);
          (2)求經(jīng)過(guò)A、B兩點(diǎn)的直線與y軸交點(diǎn)M的坐標(biāo);
          (3)過(guò)拋物線y=
          1
          4
          x2
          的頂點(diǎn)任意作兩條互相垂直的直線,過(guò)這兩條直線與拋物線的交點(diǎn)A、B的直線AB是否恒過(guò)定點(diǎn),如果是,指出此定點(diǎn),并證明你的結(jié)論;如果不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知拋物線C1:y2=8x與雙曲線C2
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)有公共焦點(diǎn)F2,點(diǎn)A是曲線C1,C2在第一象限的交點(diǎn),且|AF2|=5.
          (1)求雙曲線C2的方程;
          (2)以雙曲線C2的另一焦點(diǎn)F1為圓心的圓M與直線y=
          3
          x
          相切,圓N:(x-2)2+y2=1.過(guò)點(diǎn)P(1,
          3
          )作互相垂直且分別與圓M、圓N相交的直線l1和l2,設(shè)l1被圓M截得的弦長(zhǎng)為s,l2被圓N截得的弦長(zhǎng)為t,問(wèn):
          s
          t
          是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知A、B是橢圓
          x2
          4
          +
          y2
          3
          =1
          的左、右頂點(diǎn),橢圓上異于A、B的兩點(diǎn)C、D和x軸上一點(diǎn)P,滿足
          AP
          =
          1
          3
          AD
          +
          2
          3
          AC

          (1)設(shè)△ADP、△ACP、△BCP、△BDP的面積分別為S1、S2、S3、S4,求證:S1S3=S2S4
          (2)設(shè)P點(diǎn)的橫坐標(biāo)為x0,求x0的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右焦點(diǎn)F2與拋物線y2=4x的焦點(diǎn)重合,過(guò)F2作與x軸垂直的直線l與橢圓交于S、T兩點(diǎn),與拋物線交于C、D兩點(diǎn),且
          |CD|
          |ST|
          =2
          2

          (Ⅰ)求橢圓E的方程;
          (Ⅱ)若過(guò)點(diǎn)M(2,0)的直線與橢圓E相交于兩點(diǎn)A,B,設(shè)P為橢圓E上一點(diǎn),且滿足
          OA
          +
          OB
          =t
          OP
          (O為坐標(biāo)原點(diǎn)),當(dāng)|
          PA
          -
          PB
          |<
          2
          5
          3
          時(shí),求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的漸近線方程為y=±
          3
          x
          ,O為坐標(biāo)原點(diǎn),點(diǎn)M(
          5
          ,
          3
          )
          在雙曲線上.
          (1)求雙曲線C的方程;
          (2)若直線l與雙曲線交于P,Q兩點(diǎn),且
          OP
          OQ
          ,求|OP|2+|OQ|2的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案