【題目】下列說法正確的個(gè)數(shù)是( ).
①“若,則
,
中至少有一個(gè)不小于2”的逆命題是真命題;
②命題“設(shè),若
,則
或
”是一個(gè)真命題;
③命題,
,則
是
的必要不充分條件;
④命題“,使得
”的否定是:“
,均有
”.
A.4B.3C.2D.1
【答案】B
【解析】
說法①:按照逆命題的定義寫出“若,則
,
中至少有一個(gè)不小于2”的逆命題,然后通過舉特例可以判斷該命題是不是真命題;
說法②:根據(jù)原命題與逆否命題是等價(jià)命題,按逆否命題的定義寫出命題“設(shè),若
,則
或
”的逆否命題,然后根據(jù)等式的性質(zhì)可以判斷該命題是不是真命題;
說法③:按照必要不充分條件的定義,結(jié)合正弦函數(shù)的性質(zhì)可以判斷是不是
的必要不充分條件;
說法④:根據(jù)含存在量詞的命題否定的定義就可以判斷“,使得
”的否定是不是:“
,均有
”.
說法①:“若,則
,
中至少有一個(gè)不小于2”的逆命題是若
,
中至少有一個(gè)不小于2”,則
,當(dāng)
時(shí),顯然滿足
,
中至少有一個(gè)不小于2”,但是得不到
,所以本說法是錯(cuò)誤的;
說法②:命題“設(shè),若
,則
或
”的逆否命題是若
且
則
,顯然是真命題,因此原命題也是真命題,所以本說法是正確的;
說法③:當(dāng)時(shí),顯然
成立,但是
不成立,故由
不一定能推出
成立,但是由
成立,一定能推出
,所以本說法是正確的;
說法④:因?yàn)槊}“,使得
”的否定是:“
,均有
”,所以本說法是正確的.因此一共有3個(gè)說法是正確的.
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線
:
(
,
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線
:
.
(1)說明是哪一種曲線,并將
的方程化為極坐標(biāo)方程;
(2)若直線的方程為
,設(shè)
與
的交點(diǎn)為
,
,
與
的交點(diǎn)為
,
,若
的面積為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)將的方程化為普通方程,將
的方程化為直角坐標(biāo)方程;
(Ⅱ)已知直線的參數(shù)方程為
,
為參數(shù),且
,
與
交于點(diǎn)
,
與
交于點(diǎn)
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年的政府工作報(bào)告強(qiáng)調(diào),要樹立綠水青山就是金山銀山理念,以前所未有的決心和力度加強(qiáng)生態(tài)環(huán)境保護(hù).某地科技園積極檢查督導(dǎo)園區(qū)內(nèi)企業(yè)的環(huán)保落實(shí)情況,并計(jì)劃采取激勵(lì)措施引導(dǎo)企業(yè)主動(dòng)落實(shí)環(huán)保措施,下圖給出的是甲、乙兩企業(yè)2012年至2017年在環(huán)保方面投入金額(單位:萬元)的柱狀圖.
(Ⅰ)分別求出甲、乙兩企業(yè)這六年在環(huán)保方面投入金額的平均數(shù);(結(jié)果保留整數(shù))
(Ⅱ)園區(qū)管委會(huì)為盡快落實(shí)環(huán)保措施,計(jì)劃對企業(yè)進(jìn)行一定的獎(jiǎng)勵(lì),提出了如下方案:若企業(yè)一年的環(huán)保投入金額不超過200萬元,則該年不獎(jiǎng)勵(lì);若企業(yè)一年的環(huán)保投入金額超過200萬元,不超過300萬元,則該年獎(jiǎng)勵(lì)20萬元;若企業(yè)一年的環(huán)保投入金額超過300萬元,則該年獎(jiǎng)勵(lì)50萬元.
(ⅰ)分別求出甲、乙兩企業(yè)這六年獲得的獎(jiǎng)勵(lì)之和;
(ⅱ)現(xiàn)從甲企業(yè)這六年中任取兩年對其環(huán)保情況作進(jìn)一步調(diào)查,求這兩年獲得的獎(jiǎng)勵(lì)之和不低于70萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn),在
軸截得的弦長為2.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)若為軌跡
上一動(dòng)點(diǎn),過點(diǎn)
作圓
的兩條切線分別交
軸于
,
兩點(diǎn),求
面積的最小值,并求出此時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),判斷函數(shù)
的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:
.(
為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,梯形
與平行四邊形
所在平面互相垂直,
,
,
,
,
.
(Ⅰ)求證:平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判斷線段上是否存在點(diǎn)
,使得平面
平面
?若存在,求 出
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,
為左焦點(diǎn),
為上頂點(diǎn),
為右頂點(diǎn),若
,拋物線
的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為
.
(1)求的標(biāo)準(zhǔn)方程;
(2)是否存在過點(diǎn)的直線,與
和
交點(diǎn)分別是
和
,使得
?如果存在,求出直線的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某水文觀測點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù),得到某河流水位(單位:米)的頻率分布直方圖如下.將河流水位在
,
,
,
,
,
,
各段內(nèi)的頻率作為相應(yīng)段的概率,并假設(shè)每年河流水位變化互不影響.
(1)求未來4年中,至少有2年該河流水位的概率(結(jié)果用分?jǐn)?shù)表示).
(2)已知該河流對沿河工廠的影響如下:當(dāng)
時(shí),不會(huì)造成影響;當(dāng)
時(shí),損失50000元;當(dāng)
時(shí),損失300000元.為減少損失,
工廠制定了三種應(yīng)對方案.
方案一:不采取措施;
方案二:防御不超過30米的水位,需要工程費(fèi)用8000元;
方案三:防御34米的最高水位,需要工程費(fèi)用20000元.
試問哪種方案更好,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com