日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線x2=2py(p>0)的頂點到焦點的距離為1,過點P(0,p)作直線與拋物線交于A(x1 , y1),
          B(x2 , y2)兩點,其中x1>x2
          (1)若直線AB的斜率為 ,過A,B兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程;
          (2)若 ,是否存在異于點P的點Q,使得對任意λ,都有 ⊥( ﹣λ ),若存在,求Q點坐標;不存在,說明理由.

          【答案】
          (1)解:由已知得p=2,直線和y軸交于點(0,2),

          則直線AB的方程為y﹣2= x,即x﹣2y+4=0,

          得A,B的坐標分別為(4,4),(﹣2,1),

          又由x2=4y,得到y(tǒng)= x2

          ∴y′= x,

          ∴拋物線拋物線在點A處切線的斜率為2,

          設(shè)圓C的方程為(x﹣a)2+(y﹣b)2=r2

          ,

          解得a=﹣1,b= ,r2= ,

          ∴圓的方程為(x+1)2+(y﹣ 2= ,

          即為x2+y2+2x﹣13x+12=0


          (2)解:依題意可設(shè)直線AB的方程為y=kx+2,代入拋物線方程x2=4y得x2﹣4kx﹣8=0,

          ∴x1x2=﹣8,①,

          由已知 得﹣x1=λx2

          若k=0,這時λ=1,要使 ⊥( ﹣λ ),Q點必在y軸上,

          設(shè)點Q的坐標是(0,m),從而 =(0,2﹣m),

          ﹣λ =(x1,y1﹣m)﹣λ(x2,y2﹣m)=(x1﹣λx2,y1﹣m﹣λ(y2﹣m))

          ﹣λ )=(2﹣m)[y1﹣λy2﹣m(1﹣λ)]=0,

          ∴y1﹣λy2﹣m(1﹣λ)=0,

          + ﹣m(1+ )=0,

          (x1+x2)(x1x2﹣4m)=0,將①代入得m=﹣2,

          ∴存在點Q(0,﹣2)使得 ⊥( ﹣λ


          【解析】(1)先求出p的值,再求出直線方程,求出A,B的坐標,根據(jù)導數(shù)的幾何意義求出切線的斜率,設(shè)圓C的方程為(x﹣a)2+(y﹣b)2=r2 , 利用待定系數(shù)法解得即可,(2)依題意可設(shè)直線AB的方程為y=kx+2,代入拋物線方程x2=4y,根據(jù)未達定理得到x1x2=﹣8,若k=0,這時λ=1,設(shè)點Q的坐標是(0,m),利用向量的坐標運算和向量的垂直的條件得到即 (x1+x2)(x1x2﹣4m)=0,代入計算即可求出m的值.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示的多面體是由一個以四邊形ABCD為地面的直四棱柱被平面A1B1C1D1所截面成,若AD=DC=2,AB=BC=2 ,∠DAB=∠BCD=90°,且AA1=CC1= ;

          (1)求二面角D1﹣A1B﹣A的大。
          (2)求此多面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)O是坐標原點,橢圓C:x2+3y2=6的左右焦點分別為F1 , F2 , 且P,Q是橢圓C上不同的兩點,
          (1)若直線PQ過橢圓C的右焦點F2 , 且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
          (2)若P,Q兩點使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為了研究鐘表與三角函數(shù)的關(guān)系,以9點與3點所在直線為x軸,以6點與12點為y軸,設(shè)秒針針尖指向位置P(x,y),若初始位置為P0 ),秒針從P0(注此時t=0)開始沿順時針方向走動,則點P的縱坐標y與時間t(秒)的函數(shù)關(guān)系為(
          A.y=sin( t+
          B.y=sin( t﹣
          C.y=sin(﹣ t+
          D.y=sin(﹣ t﹣

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知拋物線上一點到其焦點的距離為2.

          (1)求拋物線的方程;

          (2)若直線與圓切于點,與拋物線切于點,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,正方形ABCD邊長為2,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點F,連結(jié)CF并延長交AB于點E.

          (1)求證:AE=EB;
          (2)求EFFC的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】2017年,在國家創(chuàng)新驅(qū)動戰(zhàn)略下,北斗系統(tǒng)作為一項國家高科技工程,一個開放型的創(chuàng)新平臺,1400多個北斗基站遍布全國,上萬臺套設(shè)備組成星地“一張網(wǎng)”,國內(nèi)定位精度全部達到亞米級,部分地區(qū)達到分米級,最高精度甚至可以達到厘米或毫米級。最近北斗三號工程耗資9萬元建成一小型設(shè)備,已知這臺設(shè)備從啟用的第一天起連續(xù)使用,第天的維修保養(yǎng)費為元,使用它直至“報廢最合算”(所謂“報廢最合算”是指使用這臺儀器的平均每天耗資最少)為止,一共使用了多少天,平均每天耗資多少錢?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖在長為10千米的河流的一側(cè)有一條觀光帶,觀光帶的前一部分為曲線段,設(shè)曲線段為函數(shù)(單位:千米)的圖象,且圖象的最高點為;觀光帶的后一部分為線段

          (1)求函數(shù)為曲線段的函數(shù)的解析式;

          (2)若計劃在河流和觀光帶之間新建一個如圖所示的矩形綠化帶,綠化帶僅由線段構(gòu)成,其中點在線段上.當長為多少時,綠化帶的總長度最長?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)f(x)=|x|﹣2|x+3|.
          (1)解不等式f(x)≥2;
          (2)若存在x∈R使不等式f(x)﹣|3t﹣2|≥0成立,求參數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習冊答案